
International Journal of Advanced Robotic Systems

SitLog: A Programming Language
for Service Robot Tasks

Luis A. Pineda1,, Lisset Salinas1, Ivan V. Meza1, Caleb Rascon1 and Gibran
Fuentes1

1Universidad Nacional Autónoma de México
? lpineda@unam.mx

Abstract In this paper we present SitLog: a declarative

situation-oriented logical language for programming

situated service robot tasks. The formalism is task and

domain independent, and can be used in a wide variety

of settings. SitLog can also be seen as a behaviour

engineering specification and interpretation formalism to

support action selection by autonomous agents during

the execution of complex tasks. The language combines

the recursive transition network formalism, extended

with functions to express dynamic and contextualized

task structures, with a functional language to express

control and content information. The SitLog interpreter is

written in Prolog and SitLog’s programs follow closely the

Prolog notation, permitting the declarative specification

and direct interpretation of complex applications in a

modular and compact form. We discuss the structure and

representation of service robot tasks in practical settings

and how these can be expressed in SitLog. The present

framework has been tested in the service robot Golem-II+

using the specification and programming of the typical

tasks which require completion in the RoboCup@Home

Competition.
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1. Introduction

In this paper we present a programming language

and environment for the specification, representation

and interpretation of service robot tasks. Programming

service robots is a complex exercise involving several

kinds of programs defined in at least three, mostly

orthogonal, dimensions: the first consists of the algorithms

for programming the robot’s basic perception and

action behaviours (e.g., vision, speech recognition and

interpretation, navigation); the second involves system

programming which deals with processes and agents,

process communication and coordination, and also with

the drivers for the diverse input and output devices;

finally, the third dimension addresses the representation

and programming of the service robot task structure.

This is known in the literature as behaviour engineering.

Thanks to recent advances in computing, algorithms

and sensor and mechatronic technologies, current robotic

systems are often equipped with a wide range of

functionalities such as navigation, grasping and object

recognition. As a result, robots are now capable of

performing complex tasks that involve many of these

functionalities working concurrently. In order for a robot

to perform tasks autonomously, a way to specify its

behaviour is needed, i.e., an action selection mechanism

which decides what to do based on what the robot

perceives and the model of the task. This is especially

true for service robots which operate in highly dynamic
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and unstructured environments. Several strategies have
been proposed for behaviour engineering, ranging from
using general programming frameworks and conventional
languages to developing domain-specific languages.
However, the challenge of how to specify behaviour in
a flexible and concise way still remains. In this paper we
are concerned with specifying and programming service
robots in this latter dimension.

In Section 2 we overview several approaches for
representing and programming task structure, with focus
on service robot tasks, and place the present approach in
such a context.

In Section 3 we present our approach for representing the
structure of service robot tasks. Tasks are conceptualized
in terms of generic protocols, which we call dialogue
models (DMs), which the robot needs to perform in
order to achieve its goals. The underlying computational
model of the present approach is the functional recursive
transition network (F-RTN) [1], an extension of the
recursive transition network (RTN) [2]. RTNs have an
expressive power equivalent to a push-down automata
and the model goes beyond the finite state automata (FSA)
or finite state machine (FSM) model (i.e., in the formal
sense in which a FSA corresponds to a regular language)
commonly used in service robot task programming,
but preserves the graph-oriented structure, providing a
very good compromise between expressive power and
efficient computation. The programming environment is
embedded within the robot’s architecture and operating
system through a simple interface, permitting fast
prototyping and development. In addition, the system
provides a simple and flexible interface to knowledge
bases and deliberative resources, like planners, theorem
provers and problem solvers which can be used on
demand during task execution.

The specification and interpretation of SitLog’s programs
are presented and illustrated in Section 4. These follow
closely the Prolog notation and the core of the system
consists of two interpreter programs working in tandem:
the first implements the F-RTN model (i.e., for traversing
the recursive graph), and the second interprets expressions
of a functional language called L through which the
content and control information of DMs and situations
is expressed. DMs have a diagrammatic representation
which is also presented in this Section. The framework is
illustrated with the specification and program of a typical
behaviour required in many service robot scenarios, such
as the scenarios in the RoboCup@Home Competition.

DMs are represented independently of perception and
action modalities, and SitLog’s programs need to be
related to the actual interpretations and actions performed
by the robot during the execution of a task. For this, the
SitLog interpreter is embedded in the robot’s architecture.
In Section 5 we describe the interaction-oriented cognitive
architecture (IOCA) [1] that we have developed in
conjunction with SitLog for this purpose.

In Section 6 the implementation of the present formalism
and programming environment in the robot Golem-II+ is
presented. For validation purposes we have developed
the full set of tasks of the RoboCup@Home competition

(Rulebook 2013) with very promising results. SitLog is
independent of task and domain, and can be embedded
in different architectures and operating systems, and the
paper is concluded in Section 7 with a brief reflection on
the generality of the present formalism.

2. Robotic Programming Languages

In this section we review a variety of strategies for
specifying and programming the structure of robotic tasks.
Among the first domain-specific languages designed for
behaviour engineering was the Behaviour Language [3],
built on an extension of the subsumption architecture [4].
In the Behaviour Language, behaviours are defined as
collections of rules written in a subset of Lisp. From
these rules, behaviours are compiled into augmented
finite states machines (AFSMs) and these in turn into
assembler code. Other prominent early instances of robotic
programming languages are Colbert [5] and the Task
Description Language (TDL) [6]. Colbert is a sequencer
language created for the Sapphira architecture and used
for developing intermediate modules connecting motion
control and planning. The semantics of a Colbert program
is based on FSMs, which are written in a subset of ANSI
C. TDL, on its part, defines a syntax as an extension of
C++ for task-level control such as task decomposition,
synchronization, execution monitoring and exception
handling. TDL code is compiled into pure C++ code with
calls to a platform-independent task-control management
(TCM) library.

Recent instances of domain-specific languages include
the Extensible Agent Behaviour Specification Language
(XABSL) [7], XRobots [8] and b-script [9]. The semantics
of both XABSL and XRobots is based on hierarchical state
machines. In XABSL, a given state of the whole system is
determined by a subset of state machines. XABSL has been
implemented on many platforms, mainly on robots that
participate in the RoboCup soccer competitions. XRobots
treats states as behaviours which are first class objects
in the language and can be passed as parameters to
other behaviours. It also integrates template behaviours,
allowing generalized behaviours to be customized and
instantiated. In contrast, b-script describes hierarchical
complex behaviours via specialized generators. b-script’s
syntax is built on a combination of Python and C++.
Programs written in b-script can be executed by an
interpreter or compiled into C++ code.

Another common strategy for behaviour engineering is the
use of general programming frameworks. GOLOG [10],
a logic programming language based on the situation
calculus, has been shown to be applicable to robot
programming [11]. Some extensions of this language
have added additional features such as concurrency [12],
continuous change and event-driven behaviours [13],
and execution and monitoring systems [14] to make
it more suitable for some applications. Frob [15], a
functional reactive programming framework embedded
in Haskell, was introduced by Peterson et al. for
programming robots at various levels of abstractions. For
time-critical applications such as space rovers, the reactive
model-based programming language (RPML) [16, 17] has
been widely adopted. Ziparo et al. [18] presented a new
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formalism based on Petri Nets, called Petri Net Plans
(PNP), for describing robot and multi-robot behaviours.
UML statecharts have been applied for the same purpose,
especially in soccer robots [19, 20].An important advantage
of the statechart and Petri Net Plans approaches is that
agent behaviours can be naturally designed through
intuitive graphical tools.

In the case of service robots, applications and tasks
are commonly implemented with variants of FSMs. For
instance, the behaviour of HERB 2.0 [21] is modelled by
the behaviour engine (BE) [22] through three different
layers using hybrid state machines. This approach has
allowed the service robot HERB2.0 to carry out complex
manipulation tasks in human environments. In [23], the
TREX framework was used to control the behaviour
of a PR2 robot. TREX integrates task planning, discrete
and continuous states, and durative and concurrent
actions. Under this framework, the robot was able to
navigate through an office environment, open doors and
plug itself into electrical outlets. Bohren et al. developed
a Python library called SMACH [24, 25] based on
hierarchical concurrent state machines. SMACH served
as the task-level executive of a PR2 robot in a drink
fetching and delivery application [24]. For the GRACE
robot [26], FSMs were created under TDL to structure the
tasks of the AAAI Robot Challenge. In the context of
RoboCup@Home, the robots Cosero and Dynamaid [27]
build hierarchical state machines to perform the tests of
the competition, whereas the robot Caesar [28, 29] used an
enhanced version of GOLOG named ReadyLog [30].

In summary, several different strategies and
domain-specific languages have been proposed for robot
behaviour engineering. Most of these strategies are
implemented as extensions of conventional programming
languages, mainly in the imperative, specification and
functional paradigms. The formalisms used in these
strategies are commonly built upon the FSM or extensions
of it, thus often translating in a limited expressive power
and unwieldy task programming. In contrast, SitLog is
a logic programming language especially designed for
service robot tasks and constructed on the more expressive
formalism of DMs, which exploit the context and history of
the task to decide the actions to be executed. In the logical
programming paradigm, on its part, ReadyLog is focused
on reasoning about actions, while SitLog has the notions
of situation and task structure as its main representational
objects. Here, we argue that SitLog is particularly suitable
for specifying task-level behaviours of service robots in a
flexible and concise way, as illustrated in the example in
Section 4.4.

3. Task Structure, Situations and Dialogue Models

Service robot tasks can be construed in terms of states, in
which the robot is capable of performing some specific
set of actions, depending on the input information at the
state and possibly on the previous states visited by the
robot during the execution of the task. States can be seen
from a dual perspective as states in the world and as
informational objects in the robot’s memory. Here, we say
that the robot is situated if the memory state corresponds to
the state in the world (i.e., the robot is in the state in which

“it thinks” it is); in this case, interpretations and actions
are performed in context and contribute to the successful
completion of the task. On the other hand, if the external
information does not match the memory state, the robot
is out of context; whenever this is the case, the robot’s
interpretations and actions need to be directed to place the
robot in context again, before proceeding with the task.

An important question from this perspective is how much
information needs to be contained within information
states in service robot tasks. Here there is a trade-off
between expressive power and computational cost: if
states have a small amount of information and the next
state is determined to a great extent by the external
input, computations are efficient, but complex tasks
are cumbersome and difficult to model; on the other
extreme, if states contain large amounts of information
and the determination of the next state requires inference,
expressing the task structure may be simple but at a
high computational cost. These two extremes correspond
to two opposing traditions in interaction and dialogue
modelling: one is the use of FSMs, where states have
a minimal amount of information expressed by the
constant labels on their arcs; this approach is common
in dialogue systems and interactive applications, and
also in many service robots, as mentioned above. The
other is the artificial intelligence tradition in dialogue
modelling involving complex inference and the notion
of conversational moves that need to be identified
dynamically through searching during the execution of the
task (e.g., [31] and derived work). In this later case, a state
may contain a full “mental state” including a temporal
and spatial situation, the history of the task, domain
knowledge, the beliefs, desires and intentions of the agent,
and even common sense knowledge.

In the present framework we adopt the view that the
state’s information content consists of the knowledge
of the potential actions performed by another agent
(the interlocutor) at such a state, with or without
communicative intent, in addition to the knowledge of
the potential events which can occur in the world at
the particular state too; we refer to this knowledge as
the expectations; this information state contains also the
knowledge of the intentional actions that the robot needs
to perform in case a particular expectation is met. On
this basis, we define a situation to be an information state
consisting of the representation of the set of expectations
and potential actions in the context of the task, in
addition to the control information required within the
task structure.Expectations, actions and next situations can
be concrete, but these can also be dynamic and depend
on the context and, in the present formulation, situations
can be highly abstract knowledge objects supporting large
spatial and temporal abstractions. For instance, the robot
may be in a finding situation in which it has the expectation
of seeing an object or failing to see an object at each point
in the search path. Another expectation in this situation
may be reaching (or failing to reach) a search point; in this
situation the robot may navigate and change its spatial
position and orientation continuously for a large amount
of time, and nevertheless remain in the same situation.
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From another perspective, expectations are representations
of the potential interpretations (i.e., the outputs of
perception) that are plausible in a given context within
a task structure, and differ from the raw data produced
by low-level sensors, that need to be handled by
low-level processes in a context independent fashion (i.e.,
independently of task and domain). A situation is then an
abstraction over a collection, possibly large, of perceptions
and actions, and tasks can be modelled often through
a small set of situations. In addition, while an FSM
changes the state when a symbol labelling one of its
arcs is consumed (i.e., an event occurs in the world), an
agent changes its situation when its set of expectations is
changed. Although a change of expectations is often due
to an external event, there are many external events that do
not change the expectations, and the expectations can also
be changed as a result of an inference, which is internal
to the agent. Hence, situations are intentional knowledge
objects in opposition to FSM states, which are extensional
and deal directly with concrete input.

Other kinds of knowledge stored in the robot’s databases
and/or knowledge bases, like domain specific or general
concepts, or even the robot’s beliefs, desires and
intentions, are not included in the situation in the present
framework. These knowledge objects can be retrieved
and updated from memory during the interpretation of a
situation, but such knowledge is to a large extent context
independent and not directly relevant to communication
and interaction.

More generally, situations are contextual informational
objects and the notion of expectation presupposes
that the robot is placed in context in relation to
the task. For this, the present notion of situation
is restricted to tasks where this condition is met.
We refer to tasks that can be construed in this
form as practical tasks with their associated practical
task and domain-independent hypotheses, extending
Allen’s corresponding practical dialogues notion and
hypotheses [32] as follows: the structure of practical
tasks, although complex, is significantly simpler than open
human tasks (i.e., practical task hypothesis) and within the
genre of practical tasks the structure of the tasks and task
management are independent of the task domain and the
particular task being performed (i.e., domain-independent
hypothesis). We also advance the hypothesis that practical
tasks lie somewhere between FSMs, which are too limited
in their expressive power, and open search engines which
demand an unbounded computational cost. SitLog has
been developed to support this notion of situation and task
structure. Next, we introduce the language and illustrate
the framework with a simple application.

4. Specification of SitLog

4.1. Situations and Dialogue Models

A task T is represented in SitLog as a set of DM types
T = [dm1, dm2, . . ., dmn]1. In turn each DM consists of
a set of situation types dmi = [s1, s2, ..., sn]. During the

1 Although we use a Prolog list (a sequence of elements enclosed in
brackets: “[e1, e2, . . ., en]”) to represent DMs and situations, the order
is not considered and such a list is interpreted as a set.

interpretation process, instances of DM and situations are
created and executed dynamically, unfolding a graph that
corresponds to the structure of the task. Identifiers and
variables within DMs and situations have a local scope and
these structures can be thought of as abstract data-types in
the standard sense. The arguments of DMs and situations
are called by reference and these abstract objects support
recursive calls, providing a simple and expressive way to
represent complex cyclic behaviours as illustrated below.

Dialogue model and situation names or IDs can be
constant or predicate symbols with one or more arguments
(e.g., dm1, dm2(X, Y, Z), s1, s3(Z, W)). Following Prolog’s
notation, identifiers starting with lower case letters stand
for constants and predicates, and those starting with
capital letters stand for variables. In addition to Prolog’s
variables, SitLog supports the definition of global and
local variables; these are atoms (i.e., constants) with
an associated value that can be assigned, modified or
recovered within the situation’s body and is preserved
along the execution of the task in the case of global
variables, or within the execution of a dialogue model in
the case of local variables, as explained below.

A DM is expressed as a clause with three arguments: an
identifier, a set of situations, and a set of local variables, as
follows:

diag_mod(id, Situations, Local_Vars).

In this definition Situations stands for the list of situations
of the DM; each situation is specified as a list of
attribute-value pairs including the following:

[

id ==> ID,

type ==> Type,

prog ==> Local_Prog,

in_arg ==> In_Arg,

out_arg ==> Out_Arg,

arcs ==> [

Expect1:Action1 => Next_Sit,

Expect2:Action2 => Next_Sit2,

...

Expectn:Actionn => Next_Sitn

],

diag_mod ==> Diag_Mod_ID

]

The symbols at the left of ==> are the attribute names, and
the symbols at the right stand for variables or expressions
through which the actual expectations, actions, next
situations and control information of the situation are
expressed. These expressions are evaluated during the
execution of the situation, and their values correspond to
the concrete interpretations and actions performed by the
robot in the situation, including the selection of the next
situation, which can be a dynamic choice depending of the
context.

Situations have three mandatory attributes: id, type

and arcs. The value of the first is an identifier (possibly
with a list of arguments, as mentioned above) for each
situation within the DM; whenever an instance of the DM
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is created and executed, an instance of the first situation
in the situation’s list is created and executed too, and this
corresponds to the initial node of the situation’s graph that
unfolds during the execution of the DM.

The value of the type attribute is an identifier of the
information’s input modality or combination of modalities
(e.g., speech, vision) and has an associated perceptual
interpretation algorithm.

The value of the attribute arcs is a set of objects
of form Expecti:Actioni => Next_Siti codifying
the expectation, action and next situation of the arci
of the DM. During the interpretation of the situation
all expressions representing expectations are evaluated,
rendering a concrete value, which should match one of
the interpretations made by the robot at the situation.
Once an expectation is met, the expressions representing
the corresponding action and next situation are evaluated
too, and the robot performs the concrete action and
moves to the concrete situation that results from this latter
evaluation process. In the case that no situation is met, the
system executes a recovery protocol that is also specified
as a DM; then, a new instance of the situation where the
failure occurred is created and executed.

In addition to the interpretation modality types, there are
two generic types: recursive and final. Every DM
must contain one or more final situations, each standing
for a possible conclusion of the task and, consequently,
do not have the attribute arcs. The type recursive,
in turn, stands for a situation that contains a full DM
within it, so situations of this type abstract over embedded
tasks. Situations of type recursive must include two
attribute-value pairs as follows:

[ ...
type ==> recursive,
embedded_dm ==> Dialogue_Model_ID,
...

]

Whenever a recursive situation is executed, the current
task is pushed onto the stack, and the initial situation of
the embedded model is interpreted. In addition, whenever
a final situation is reached, the current DM is popped from
the stack, with the identifier of the particular final situation
in which the task was concluded. Recursive situations
permit structuring tasks at different levels of abstraction,
and behaviours are grounded in generic situations which
perform actual interpretations and actions in concrete
input and output modalities.

There are also four optional attributes: in_arg, out_arg,
prog and diag_mod. The first two correspond to the
input and output arguments of the situation, providing
a simple mechanism to pass control and content among
situations and DMs, in addition to the arguments of DM
and situation IDs. The in_arg and out_arg arguments
are defined in a pipe-like fashion and the value in_arg
propagates along DMs and situations unless out_arg is
explicitly assigned a value, which propagates as the value
of the in_arg of the next actual situation, either within the
current DM or through the next DM executed in the task.

This pipe mechanism is explicitly handled by SitLog’s
interpreter and the arguments’ values are carried along
by the interpretation process even if they are not explicitly
stated in the specification of one or more situations.

The value of the prog attribute, in turn, is a list of
expressions, which we call the local program, that is
interpreted unconditionally when the situation is created
and executed, providing the means for representing
control and content information that is local to the
situation. The variables within the local program, and also
within the arc’s attribute, are encapsulated and have a local
scope, hence their evaluation does not affect the value of
other variables within the situation, even if they have the
same name.

Finally, the attribute diag_mod permits assigning output
values to the DM ID’s arguments from within a situation’s
body. For this the value of this attribute is unified with the
DM’s identifier when the interpretation of the situation is
concluded. Hence, despite the fact that variables in the
local program and within the arc are encapsulated within
their attributes’ scopes and within the situation’s body,
their values can nevertheless be accessible to the DM and
to the task as a whole, as will be illustrated below.

During interpretation, the system keeps track of all
concrete expectations and actions performed by the robot,
with the corresponding situation, and these objects are
assembled in a structured list, which corresponds to the
structure of the task. This structure is called the task history,
which is accessible in all DMs through functions included
in the situation’s body. The same functional mechanism
can be used to access other external knowledge resources
during the interpretation of a situation; for instance, to
query the robot’s knowledge bases, or to use deliberative
resources on demand, like planners, theorem-provers or
problem-solvers.

In summary, a DM stands for a schematic task and
each DM instance unfolds according to the expectations
met by the robot along the way, generating a concrete
graph whose nodes are the actual situation instances
and its arcs correspond to the concrete interpretation
and actions performed by the robot during the execution
of the task. In this way, a DM specifies an implicit
RTN that is explicitly rendered during the execution of
the task, and the expressive power of the formalism
corresponds at least to a push-down automata, which
is in turn equivalent to a context free grammar; in this
latter view, recursive situations correspond roughly to
variables, modality specific situations to constant symbols
and productions to the rewriting of a recursive situation by
its content, although each recursive situation may stand
for several productions, corresponding to the possible
situation’s paths. In addition, the arcs labelled with
functions that have the history as their arguments make
the interpretations, actions and next situations sensitive to
the context, and hence the extension to F-RTNs.

SitLog’s programs are executed by two interpreters that
work in tandem. The first is the F-RTN interpreter which
interprets DMs and situations and unfolds the recursive
graph. For this, the F-RTN interpreter inspects the value
of the situation’s attributes, selects the expectation that
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is matched with the current perceptual interpretation,
executes the corresponding actions and selects the next
situation.

The situation’s content is specified through expressions
of a functional term-language that we call L. The second
interpreter of SitLog is the interpreter of this latter
language, and it is used systematically by the F-RTN
interpreter for evaluating the variables and expressions
in the value slot of the attribute-value pairs, during the
interpretation of situations. Next we present and illustrate
the language L.

4.2. The Functional Language L

Expressions of the language L are built out of variable
symbols, atoms, numerals and predicate symbols (unary,
binary, etc.). In addition, there are function symbols with
an arbitrary cardinality. The basic operators of L include
assign, =, is, ->, which stand for variable assignment,
the standard unification operation, Prolog’s arithmetic
operations (e.g., X is Y + Z), the conditional and the
standard arithmetic predicates; the language includes a set
of standard operators on lists like append, member, etc.,
as well as a number of operators for abstract data-type
operations like push and pop; additional operators can
be included as needed by simply declaring the operator in
the operators list and stating the corresponding function.
Finally, the language includes the binary predicate apply
whose arguments are a function and a list of arguments.
Expressions are built compositionally in the standard way.

For instance, the following are all well-formed expressions
of L: X; a; 3; p(a); p(a, 2, X); q(X, Y); assign(X,
p(a, X)); X = q(a, b); X is 1 + Y; X == Y;
[a, p(a), p(a, b), p(X), p(a, X), p(X, Y)];
(p(a), p(X)); [a, p(a), p(X, Y), [a, b],
c]); apply(f(X), [3]); apply(g(X, Y), [1,
apply(f(X), [3])]), where symbols starting with
lower case letters are constant or predicate names, and
those starting with capital letters are standard Prolog
variables. A value is assigned to a local or global variable
through expressions using the operators (get, set and
inc); these expressions return also a value which is the
variable’s value itself once the assign operation has been
performed; for instance, if count is defined as a local or
global variable, set(count, 0), get(count, X) and
inc(cont, Y) are well-formed expressions of L which
produce the value of count that results form evaluating
the expression.

The interpretation of expressions of L is defined
compositionally, and the value of a composite term is a
function of the values of its parts and its syntactic structure
in the standard way. So expressions are evaluated by
the interpreter of L in relation to the programming
environment, which is constituted by input and output
arguments, the set of local and global variables and the
task history at the current instances of DMs and situations.
The interpreter reduces an expression to its basic form
which can be a variable, a constant, a grounded predicate,
a predicative function with one or more variables, and
also an apply term with its corresponding function and

arguments. The source code of this interpreter is available
in the reference included in Section 7.

In the context of the situation, grounded terms stand
for concrete expectations, actions or next situations; for
instance, a constant or a grounded proposition may stand
for a specific proposition expressed by the interlocutor,
or for a concrete (fully determined) action, or for a
specific next situation. Predicative functions resulting
from the evaluation process may stand for a predication
whose variables need to be instantiated by the perceptual
interpreter out of the recognition of intentions expressed
by the interlocutor, or out of the interpretation of natural
but expected events in the world. The actions resulting
from the evaluation can also be concrete and can be
performed directly by the robot, or predicative functions
with open variables that need to be further specified
before these are sent to the actual rendering mechanisms.
The next situations can be expressed by a constant or a
grounded predicate (i.e., a situation with arguments), but
can also be stated through functions, whose evaluation
results in the actual next situation. In addition, the
history can be accessed through a special predicate
defined within a function’s body, and it determines in
part the function’s value. Additionally, other deliberative
resources and memory can be accessed through a similar
mechanism.

4.3. Diagrammatic Notation

The graph of situation types have a diagrammatic
representation, where nodes stand for situations and
arcs are labelled with pairs of form a:b standing for
expectations and actions respectively, and the boundaries
of a DM are depicted by dotted lines, as in Figure 1.
In addition to standard finite state machine graphs, the
next situation may be determined dynamically through a
function from the task history (i.e., the discourse context)
into the set of situations; in this case, the corresponding
output arc forks at the thick dot labelled with the selection
function’s name (e.g., h), out of which there are directed
links to the possible next situations. In this notation,
information flow is depicted by continuous thin lines,
while control flow by thicker lines. In particular, recursive
situations embedding subordinated DMs have an output
link to the first situation of the embedded DM, and include
a number of thick dots depicting the return entry points
when the execution of the embedded DM is concluded;
there is also a control link from each final situation of the
embedded DM to the corresponding return entry point,
and from this to the situation that is executed next to the
recursive one in the embedding DM.

For instance, the diagram in Figure 1 illustrates a task
with two DMs (i.e, md_main and md_sub), where md_main
has the situations is, rs and fs of types speech, recursive
and final respectively.The situation is has two output arcs,
one that cycles on it if the expectation e1 is met, and
the second which is labelled with the expectation f and
the action g that goes either to itself or to the recursive
situation depending on the value of the function h labelling
the junction dot. In this illustration, f, g and h stand for
functions that are evaluated dynamically in relation to
the task history and become concrete expectations, actions
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In_Arg

Out_Arg
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Figure 1. Graphical representation of the dummy application.

and next situations each time the corresponding arc is

transversed. The embedded DM md_sub, in turn, also has

three situations, two of which are of type final; there is

also a control link from each of these to an entry point of

the md_main DM, and from this to the its corresponding

next situation; so, if the embedded task finishes in the

situation fs1, the recursive situation is resumed at its left

entry point and the next situation in the md_main DM

is is. In this way, the expectations of a recursive situation

are the final situations of its embedded DM. Figure 1

also illustrates the flow of information between DMs and

situations through their arguments, where the out_arg
of one DM or situation is the in_arg of the next DM or

situation executed in the actual task.

We also consider that a situation may have more than

one instance; this is the case for situations with the same

identifier but with different parameters or parameters

values. This expressivity is useful for specifying modular

or recursive behaviour (i.e., when one situation codifies

the basic case and another the inductive pattern), where

an arc labelled with an arbitrary a:b pair may be followed

by a number of disjunctive situations. This pattern also

has a diagrammatic representation analogous to the thick

dot depicting a disjunction of next situation but in this

latter case, the disjunction is depicted with a small circle

including the symbol _ and the links out of it are labelled

with a symbol or a string standing for the condition that is

met when such link is transversed. This case is illustrated

in Figure 2, where a DM is constituted by a situation a that

is followed by two instances of situation b via a disjunction

symbol; in this case, the link from the disjunction to the left

instance of b is labelled by the string cond1 and the right

instance by cond2; in the illustration, whenever cond2 is

met the system is engaged in a cyclic behaviour, but when

cond1 is met the computation comes to an end.

4.4. An Example Program in SitLog

In this section we illustrate SitLog with a program

implementing the find task in which a robot searches for

a person, an object or a list of objects through a discrete

path until such entity or list of entities is found or the path

bb

Cond2Cond1


a

e1:a1 e2:a2

Figure 2. Diagrammatic representation of recursive DM
structures.

is exhausted; for this definition we assume that the robot

is already in the initial position of the search path. This is a

common behaviour required in many service robot tasks,

like the Cocktail Party, Clean it Up, Emergency Situation and

Restaurant tests of the RoboCup@Home Competition (Rule

book 2013). This behaviour is quite complex and can be

structured in a hierarchy of DMs as shown in Figure 3.

The find DM uses the scan DM to make a number of

horizontal observations at each path position and move

to the next position until the object is found or the path

is exhausted. The scan DM, in turn, uses the tilt DM to

make a number of vertical observations at each of the

robot’s neck scanning positions using the see DM at each

tilt orientation. Finally see selects the kind of object sought

and see_object, see_face, detect and recognize make the basic

observations.Each DM in the hierarchy includes the main

logic of the behaviour at the corresponding level, the

specification of the perception and action capabilities that

are relevant at that level, and the specification of one or

more recursive situations embedding the DM codifying

the next level behaviour down the hierarchy until the

bottom DMs which implement the basic perceptions and

actions.

We illustrate SitLog with the actual definition of the

find DM. We first introduce the program through its

diagrammatic representation in Figure 4. The DM has

six situations altogether: the initial situation scan is a

recursive situation that uses the embedded scan DM.

The return entry points of this situation are fs_found and

fs_not_found corresponding to whether or not the sought

entity was found in any of the observations made at

the current position of the robot. In the former case,

SitLog’s interpreter selects the final situation fs_found and

terminates the task with the success status. In the latter,

the interpreter selects one instance of the search situation.

In case the situation search stating that the task has been

exhausted is selected (the left instance), the system moves

the fs_error final situation and the execution of the DM

is ended. On the other hand, if there are more positions

to explore, the system moves to one instance of the scan

situation, depending of whether or not is able to reach the

next observation position. In the first case, the scan DM

is executed again one position down the path, and in the

latter the task is ended with the corresponding status error.

The actual SitLog code for this DM is shown in Listing 1.

The specification of the six situations is declarative and

corresponds quite directly to the diagram. The arguments

of the find DM are as follows: (1) the type of entity to be
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Figure 3. Abstract decomposition of find task.

found: a person or an object; (2) the identifier of the sought

person or list of objects; in the case where the sought

entity is not specified, the MD returns the first object or

list of objects found in the exploration process; (3) a list of

search positions (i.e, the search path); (4) the list of scan

horizontal orientations that the robot needs to inspect at

every search position; (5) the list of vertical tilt orientations

that the robot needs to inspect at each scanning orientation;

(6) a mode of observation in the case where the entity

sought is a person: memorize or recognize; (7) the list

of objects found that were specified as sought objects,

with their parametric information (e.g., position and pose

in relation to the current search position); (8) the list of

search positions that remained unexplored when that find

task was accomplished; so, if the robot is engaged in

the search of multiple objects, it can resume that task at

its current position after the first successful observation;

and (9) the status of the task (e.g., ok, not_found,

not_detected, empty_scene, move error, etc.), reporting

the successful completion of the task or the status of the

last observation made in the search process.The code also

shows the arguments’ pipe equating the out_arg of a

situation with the in_arg of the next actual situation,

and these arguments must have exactly the same form.

Situations with a single output arc have the corresponding

expectation labelled empty; also, if there is no action in an

arc its corresponding position is also labelled empty. The

specifications of the rest of the DMs in Figure 3 is stated

along similar lines.

The format of a call to the find DM is as follows:

find(object, [’lemon tea’,gatorade,pepsi],

[pt1,pt2,pt3,pt4], [left,right],

[-30,-15], _, Found_Objects,

Rest_Positions, Status).

This DM call specifies that the robot should search for

three objects through a path constituted by four positions,

and in each position must look at the current orientation

of the neck (as a default convention) and also at the left

and right. In addition, at each neck orientation it must

look at the current tilt orientation, and also at -30 and

-15 vertical degrees. In the execution of the path the robot

searches in these three dimensions until a scene containing

at least one of the sought objects is seen, and returns all the

objects in the scene that are specified as been sought in the

variable Found_Objects, the positions yet to be explored

fs_found
final

find

fs_error
final

search
neutral

scan
neutral

scan
recursive

move_error

not_found

search
neutral

move_success
found

Pos [] Pos=[] 




Figure 4. Diagrammatic representation of find DM.

in Rest_Positions and the status of the task which is

success or the status error of the last observation made

in the search process. The sixth argument is unspecified

as it is only used to state the mode of observation (i.e.,

memorize or recognize) in the case where the sought object

is a person.

In addition, a SitLog application, like the tests of

the RoboCup Competition, requires that the global

specification of all expectation and actions names (e.g.,

the navigate predicate) are included in all DMs and

situations, and also the specification of the global variables

and functions. The expressions within the arc attributes

belong to the language L and are evaluated by the

corresponding interpreter each time an arc is interpreted.

Although the present example does not use composite

expressions or functions, local programs or local variables,

the construction of a full application may require the use

of this expressive power. The full code of all DMs in

Figure 3, which does make use of these expressive devices,

is available at http://golem.iimas.unam.mx/sitlog/sitlog.

tar.gz.

5. Dialogue Models and the Cognitive Architecture

Within the present framework we have developed

the interaction-oriented cognitive architecture (IOCA),

which is centred on SitLog’s interpreter as illustrated in

Figure 5. IOCA has three main layers corresponding

to recognition/rendering at the bottom level,

interpretation/action-specification at the middle and

expectation/action-selection at the top processing

level. These three layers are involved in the main

communication cycle. The bottom layer of the architecture

consists of the speech and vision recognition modules,

for instance, that translate the external information into

the corresponding internal codes on the input side,

and of the actual realization devices for navigation and

manipulation behaviours on the output. The middle

layer on the input side corresponds to the interpreter

that matches the expectations of the current situation,

which are passed top-down from SitLog’s interpreter,

with the output of the recognition systems, which
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diag_mod(find(Kind, Entity, Positions, Orientations, Tilts, Mode, Found_Objects, Remaining_Positions, Status),

%First argument: List of situations

[

% Scan situation: already in the scan position

[id ==> scan(Entity, Positions, Orientations, Tilts, Found_Objects, success),

type ==> recursive,

out_arg ==> [Entity, Scan_Parameters, Positions, Scan_Status],

embedded_dm ==> scan(Kind, Entity, Orientations, Tilts, Mode, Scan_Parameters, Scan_Status),

arcs ==> [fs_found:empty => fs_found,

fs_not_found:empty => search(Entity, Positions, Orientations, Tilts, Found_Objects)]

],

% Error reaching next position

[id ==> scan(_, Positions, _, _, _, move_error),

type ==> neutral,

out_arg ==> [_, _, Positions, move_error],

arcs ==> [empty:empty => fs_error]],

% Search situation 1: no more search points

[id ==> search(_, [], _, _, _),

type ==> neutral,

arcs ==> [empty:empty => fs_error]],

% Search situation 2: move to the next search point and scan

[id ==> search(Entity, [Next_Position|Rest_Positions], Orientations, Tilts, Found_Objects),

type ==> neutral,

arcs ==> [empty:navigate(Next_Position, true, Status_Move)

=> scan(Entity, Rest_Positions, Orientations, Tilts, Found_Objects, Status_Move)]

],

% Final Situation

[id ==> fs_found,

type ==> final,

in_arg ==> [Entity, Found_Objects, Positions, Final_Status],

diag_mod ==> find(_, Entity, _, _, _, _, Found_Objects, Positions, Final_Status)

],

% Final Situation

[id ==> fs_error,

type ==> final,

in_arg ==> [Entity, Found_Objects, Positions, Final_Status],

diag_mod ==> find(_, _, _, _, _, _, _, Positions, Final_Status)

]

], % End situation list

% List of Local Variables

[]

). % End Find Task DM

Listing 1. SitLog’s specification of find behaviour.

proceed bottom-up, and produces the representation of
the expectation that is met in the situation. Structural
processes are defined at this level; for instance, in the
case of linguistic interpretation, the output of speech
recognition is a text string, and the interpreter includes
the parser which produces a syntactic and semantic
representation. However, perceptual interpretation
depends also on the context set by the expectations, and
also on the interaction history, and the output of the
interpreter is then a contextualized representation of the
intention expressed by the interlocutor or a representation
of an expected natural event.On the output side, the action
scheme selected by SitLog is fully specified and realized
by the corresponding rendering devices.

In actual implementations there is a particular interpreter
for each situation type defined at the level of SitLog.
Interpreters involve one or more modalities, and are
also relative to a particular perspective or aspect of the
world; for instance, there is visual interpreter for face
recognition and another for object recognition, regardless
of the fact that these involve the visual modality. However,

the output of perceptual interpretation is a propositional
representation already independent of the particular
vision algorithms and associated data structures. On the
output side SitLog selects the action schemes, which are
propositional and modality independent representations,
that need to be specified with the relevant modality
specific information and realized by the corresponding
rendering devices.

IOCA has also a reactive behavioural cycle that establishes
a link between recognition and rendering devices through
the autonomous reactive systems, which are involved
in the robot’s reactive behaviour, as shown by the
corresponding path in Figure 5. This cycle is embedded
within the main communication cycle as it does not
involve interpretations and the construction of fully
fledged representations; this cycle involves mostly signal
processing mechanisms that take place much faster
than the communication cycle. IOCA also involves
a coordinator between communication and reactive
behaviour which permits that these two cycles proceed
concurrently.
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Figure 5. The interaction-oriented cognitive architecture.

6. Practical Tasks and the Golem-II+ Robot

Service robots have the purpose of supporting people to
perform common daily life tasks. In practical settings,
such tasks have the purpose of achieving one or more goals
through the execution of a number of actions, possibly in
a previously unspecified order. Simple examples of these
tasks are the tests of the RoboCup@Home Competition (Rule
book 2013), like the Cocktail Party, Clean it Up, Emergency

Situation, Restaurant and General Purpose Service Robot.
Although these kinds of tests are defined as bench-marks
for demonstration purposes, they illustrate the potential
settings in which service robots will be useful in the future:
simple scenarios involving a few designated people and
objects, actions and events, limited in time and space,
where the robot needs to achieve a few specific goals, while
collaborating with people. In our terminology, these are
instances of practical tasks.

For the construction of this kind of application our
methodology distinguishes two main kinds of DMs: those
targeted to model the structure of the practical task as a
whole, like serving as a waitress in a restaurant, cleaning
a room or assisting clients in a supermarket, and those
directed to model general capabilities that can be used
recurrently within different tasks, like learning a person’s
face, learning his or her name, finding people in a room,
finding, grasping and delivering drinks, etc., which need
to be coordinated in order to accomplish the goals of the
task successfully. These latter kinds of actions are generic
behaviours that need to be defined independently of task
and domains, and constitute the library of behaviours that
can be used systematically by full applications, like the
find behaviour and their associated DMs which constitute
a particular library. SitLog and IOCA have been developed
with the purpose of supporting the high-level declarative
definition of practical tasks in terms of a library of
behaviours.

In order to test the present framework, SitLog and
IOCA have been implemented in the Golem-II+ robot.
Next, we list the main functionalities used by SitLog
behaviours through IOCA and their associated devices
and algorithms:
1. Face detection and recognition are carried out

by standard OpenCV functions, employing the
Viola-Jones method [33] for detection and Eigenfaces
for recognition [34] .

2. Visual object recognition is performed using
MOPED [35]; this framework uses different images of
an object to create a 3D model based on SIFT [36].

3. Person tracking is performed via a module based on the
OpenNI driver.

4. Speech recognition is carried out via a robust
live continuous speech recognizer based on the
PocketSphinx software [37], coupled with the Walt
Street Journal (WSJ) acoustic models for English
speaking users, and the DIMEx100 acoustic models [38]
for Spanish speaking users. Hand-crafted language
models for each task are able to be switched on,
depending on the context of the dialogue. Noise
filtering is carried out by estimating the noise spectral
components via a quantile-based noise estimator [39]
and subtracting it from the speech signal in a non-linear
form.

5. Speech synthesis is produced with the Festival TTS
package.

6. User localization is carried out via audio using
a triangular microphone array audio-localization
system [40].

7. Route planning is carried via the Dijkstra algorithm [41]
over a hand-crafted topological map of the
environment.

8. Obstacle evasion is carried out via the nearness
diagram [42] for long-range obstacles, and smooth
nearness diagram [43] for close-range obstacles.

9. For object manipulation, two in-house
4-degrees-of-freedom robotic arms are used. Arm
control is carried out by estimating a constrained
polar-coordinate plane and via coordinated inter-motor
movement. The grips are equipped with infrared
sensors, which reactively make adjustments when
taking objects, overriding vision errors.

7. Conclusions

In this paper we have presented SitLog: a programming
language and environment for the specification and
interpretation of behaviour engineering for service robot
tasks in a simple and flexible way. The formalism has an
associated diagrammatic notation that facilitates greatly
the design and specification of complex tasks. The core
computational mechanism consists of two interpreters
working in tandem, one for interpreting the structure of
the task and the other for interpreting content and control
information. These two interpreters are implemented in
Prolog and programs in SitLog follow closely the Prolog
notation, supporting the definition of applications in a
declarative and compact form.

We have also introduced the notion of situation which
is an information state containing the expectations and
potential actions of a robotic agent in the context of the
task structure. Situations are related in a recursive directed
graph giving rise to the notion of DMs, which can also
be seen as abstract behavioural models.Alternatively, DMs
can be seen as schematic and parametric plans to achieve
complex tasks. In addition, we have presented the notion
of practical tasks, and the practical task and domain
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independent hypotheses, and suggest that the tests of the
RoboCup@Home Competition and similar demonstration
scenarios are instances of practical tasks.

SitLog permits defining a library of general robot
behaviours, like finding people or objects in a room,
interpreting speech input, navigating to a designated
place, coordinating visual object recognition and
manipulation, etc., that can be used by different
applications on demand, in addition to the main
DMs representing the structure of a service task. This
modularity is particularly useful for the implementation
of general service robots, which need to assemble
task structures dynamically, by the composition and
interpretation of complex DMs out of the basic DMs stated
in advance. This functionality can also be seen as the
dynamic construction and execution of parametric plan
schemes out of the basic schematic plans.

These notions permitted the definition of the
interaction-oriented cognitive architecture (IOCA).
SitLog is at the heart of this architecture and relates the
flow of perception and intentional actions, articulating
the robot’s main communication cycle, which subsumes
reactive behaviour, on the one hand, and manages
symbolic representations and deliberative resources, on
the other. SitLog is also task and domain independent and
can be easily ported to different robotic architectures and
operating systems.

We have also presented the specification and interpretation
of complex robotic behaviour, illustrating the expressive
power of the formalism.In addition, we have implemented
the full set of tests of the RoboCup@Home Competition (Rule
book 2013) in the Golem-II+ robot, and we have found
no limitations on the expressive power of SitLog for this
purpose.

The source code of SitLog’s interpreter together with
the DM library of generic behaviours presented in
this paper are available at http://golem.iimas.unam.mx/
sitlog/sitlog.tar.gz. A video of Golem-II+ executing a
RoboCup@Home task fully written in SitLog can also be
seen at http://youtu.be/99XhhEkyIz4.
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