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Abstract

Estimating the directions of arrival (DOAs) of multiple simultaneous mobile sound sources is an important step for
various audio signal processing applications. In this contribution, we present an approach that improves upon our
previous work that is now able to estimate the DOAs of multiple mobile speech sources, while being light in
resources, both hardware-wise (only using three microphones) and software-wise. This approach takes advantage of
the fact that simultaneous speech sources do not completely overlap each other. To evaluate the performance of this
approach, a multi-DOA estimation evaluation system was developed based on a corpus collected from different
acoustic scenarios named Acoustic Interactions for Robot Audition (AIRA).
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1 Introduction
Estimating the direction of arrival (DOA) of a sound
source is a well written-about topic in signal processing
and has found a considerable amount of areas of appli-
cation where its usefulness ranges from a complementary
source of information to an essential part of the applica-
tion. Such applications vary from steering multiple feed
parabolic dish antennas [1], to source enhancement in
antenna arrays [2], to fault monitoring in aircrafts [3], to
intricate robotic pets [4], to close-to-life insect emulation
[5].
This usefulness has also been applied in areas where

sources are mostly speech, and thus, speech enhance-
ment is required, either for the benefit of communica-
tion clarity between the users or to benefit automatic
speech recognition (ASR) between the user and a com-
puter. Examples of these applications are the design of
hearing aids [6], robot audition [7-9], automatic meeting
processing [10], and generic human-computer interaction
via ASR (such as with mobile phones or smart homes). To
carry out speech enhancement, these applications usually
have a pre-processing stage in their auditory scene analy-
sis, which involves the automatic estimation of the DOA
of the active speech sources in the environment. This is
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known as multi-DOA estimation, and when being carried
out in real acoustic environments (with audio interfer-
ences and prevalent reverberation) with several mobile
active speech sources, it has been shown to be a very
challenging task, even if assuming that the sound sources
are in the far-field region of the microphone array (which
simplifies the signal model).
A current popular solution to the multi-DOA estima-

tion problem was presented in [11], which is arguably the
starting point of two important robot audition projects:
ManyEars [12] and HARK [13]. This solution requires
an eight-microphone hardware solution but is able to
detect accurately four moving speakers and up to seven
static speakers if given enough time. This high eight-
microphone requirement has been worked around by
minimizing the physical footprint of the microphone
array, the result of which is the small but effective 8Sound-
sUSB audio interface [14] which is now being applied in
Willow Garage’s PR2 service robot with good preliminary
results [15]. However, even with a small physical footprint,
the amount of microphones makes it difficult to employ
this solution in applications where space is limited, such
as hearing aids or mobile phones. In addition, to carry
out the multi-DOA estimation phase of the process, it
required an off-site computer because of its processing
and memory requirements [16], which, although it may
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be able to be countered with today’s technology, can be
considered high for some applications.
Other multi-DOA estimation approaches using fewer

microphones (four) and less processing and memory
requirements involve the use of Kalman filters to smooth
the estimated trajectory of the sound source in a noisy
environment [17,18], and with a bit more microphones
(five), they are even able to do so in a 3D search space [19].
However, they are only able to track one mobile source.
Important attempts have been successful in being able to
estimate the location of multiple sources using very few
microphones (two to three) [20,21], but the sources are
assumed to be static. A more detailed literature review is
provided in Section 2.
In this paper, we improve upon our earlier approach,

presented in [22] and applied in [23]. We also evaluate its
performance in a much more detailed, systematic man-
ner, which involves the capture and use of an evaluation
corpus called Acoustic Interactions for Robot Audition
(AIRA) and F1-based evaluation metrics, and doing so in
several acoustic scenarios.
The approach divides the problem into two phases.

The first phase estimates one DOA, even in a multiple-
source environment, by 1) applying a coherence threshold
between the DOAs estimated by each microphone pair
and by 2) taking advantage of the incomplete overlap
of simultaneous speech. The second phase keeps track
of the DOA of several sound sources by assigning the
incoming DOA of the first phase to either a) an existing
track or b) a new track, depending on its angular dis-
tance to existing tracks. A Kalman filter is applied to each
track for the resultingmulti-DOA estimation and for track
smoothing.
This current version of the approach is now able to 1)

track multiple mobile sound sources 2) while employing
a light hardware setup (only three microphones in a tri-
angular array) and with a small computational resource
requirement. Both these features, as far as we know, are
not present in conjunction in any of the current multi-
DOA estimation approaches, which is discussed in detail
in Section 2.1. Such combination, we believe, would be of
interest to several areas of application, as well the audio
processing community in general.
This work is organized as follows: Section 2 provides

background on the technical details to carry out multi-
DOA estimation, as well as discusses the issue of the
amount of microphones versus the number of sources
estimated. Section 3 presents some background on the
nature of simultaneous speech and how the proposed
approach takes advantage of it. Section 4 details the pro-
posed system. Section 5 presents the evaluation method
we employed to measure the proposed system’s perfor-
mance. Section 6 discusses the results, and Section 7
provides the conclusions and future work.

2 Background onmulti-DOA estimation
One of the most widely used acoustic feature for DOA
estimation is the inter-microphone time difference (ITD).
It is the delay of a sound from one microphone to
the other. Its calculation is usually based on the cross-
correlation vector (CCV) between the two captured sig-
nals. One of the simplest ways to calculate the CCV is
by calculating a Pearson-based correlation factor for each
delay value in the CCV, described in Equation 1.

CCV[ k]=
∑

i (xi − mx)(yi−k − my)√∑
i (xi − mx)2

√∑
i (yi−k − my)2

(1)

where x and y are the two discrete signals being compared,
i is the time index, k is the point at which y is being linearly
shifted (delayed) and the correlation is being calculated,
andmx andmy are themean values of x and y, respectively.
The ITD is the k value of the highest correlation measure
in the CCV.
A good example of the use of this Pearson-based cross-

correlation method for DOA estimation in a robot audi-
tion application is presented in [24], where it provided
limited results. Unfortunately, issues have arisen when
using this method in reverberative and noisy environ-
ments [25], as the CCV calculations insert bias errors in
such circumstances, which result in incorrect ITD esti-
mations. However, as it would be seen in Section 4, this
can be compensated with a combination of a form of
redundancy and calculating the CCV using a variation
of the generalized cross-correlation with phase transform
(GCC-PHAT) [26].
The GCC-PHAT methodology has been widely recog-

nized as one of the primary techniques for ITD calculation
because of its robustness against reverberation [27,28].
Because of this, it has been extensively applied for ITD
calculation in a wide variety of microphone array scenar-
ios. For example, in [29], for the authors to be able to
carry out real-time spatial rendering of different acous-
tic scenarios with a wide variety of sound sources, their
DOA was required to be estimated via first calculating
the ITD using the GCC-PHAT methodology. In addi-
tion, variations on the GCC-PHAT have been employed,
such as in [30] where the authors were able to estimate
jointly the DOA and pitch of two moving sources using
a linear array of six microphones in reverberative simu-
lated scenarios. Another variation was presented in [31],
where the authors build an acoustic map of a room using
a 13-microphone linear array, based on the GCC-PHAT
technique, to directly estimate the ITD of multiple users.
A detailed description of the GCC-PHAT methodology is
provided in Section 4.3.1.
Having calculated an ITD, the direction of the source

(DOA) can be estimated using a variety of methods. One
popular method assumes that the sound source is far
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enough from the microphone array (aka. in the far-field
region) and that there is no diffracting objects inside
the microphone array (aka. the free-field assumption) so
that the sound wave can be approximated to a planar-
type wave. This simplifies the ITD-to-DOA relation to
an arcsin function (details of which will be provided in
Section 4.3.2), but this introduces other issues in the ITD-
DOA relation. In Figure 1, the DOA is plotted against
the ITD calculated from a two-microphone array (assum-
ing far-field and free-field situations). As it can be seen in
the −50° to 50° range, the ITD-DOA relation seems close
to being uniform. However, outside that range, the rela-
tion loses its near-uniformity and the angular resolution
is reduced, which causes major errors when estimating
angles that are located in the sides of the microphone
array [9]. To counter this issue while still maintaining the
simplicity of the far-field model, in the proposed system,
this loss in angular resolution is dealt with via a proper
selection of themicrophone pair in a triangular array from
which the reported DOA is calculated, while assuming a
far-field source.
Another important issue to consider is the geometry of

the microphone array employed. Some geometries suffer
from what is known as ambiguity [32], where an ITD may
belong to more than one DOA. As it can also be seen
in Figure 1, a two-mic array, by only estimating DOAs
in the −90° to 90° range, is not able to differentiate if
an ITD will be used to calculate the DOA that is com-
ing from the front or the back of the array. This can be

surmounted by implementing ‘artificial ears’ and a hid-
den Markov model (HMM) monaural mechanism [33] to
then be able to detect if the sound source is coming from
either side of the array, but it has been deemed imprac-
tical, as any physical change to the ear (physically or its
relative position to the microphone) or to the acoustic
scenario requires re-training of the HMM. This can also
be tackled by a two-phase strategy: a first pair of signals
could be used to estimate an initial DOA, the audio acqui-
sition system could then rotate briefly, and then another
pair of signals could be acquired to estimate a second
DOA. A comparison between the DOAs would result in
an angle estimation in the −179° to 180° range (counter-
ing the front-or-back ambiguity, which, in this case, could
be considered as a trivial ambiguity). Unfortunately, this
approach has its own set of issues: it would require consid-
erably more time than when using one DOA estimate, the
required rotation would hinder mobility requirements in
some applications, and the sound source could be moving
as well, rendering the DOA comparison mute. Another
possibility would be to enlarge the microphone array so
that it surrounds the source, as in [29,31]. To do so,
however, the microphone array needs to encompass a sig-
nificant amount of the space used by the users, which may
be impractical in some applications.
In the proposed approach, a triangular array is

employed from which various DOAs are calculated; by
using a redundancy measure, the aforementioned ambi-
guity issue is circumvented. This is detailed in Section 4.
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Figure 1 DOA vs. ITD. The graph shows DOA (or Angle) in degrees vs. ITD (or Delay) in number of samples and how it deviates severely from a
uniform relation in the areas near the sides of the 1D array.
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2.1 Amount of microphones employed vs number of
sources estimated

It is important to note that the optimal amount of micro-
phones to employ for multi-DOA estimation is a matter
of discussion that is outside the scope of this work, but for
ease of description, we are referring as a ‘hardware-light’
setup if it employs as much as four microphones, since
there are portable commercial external audio interfaces
that are able to handle that many microphones.
On the one hand, there is a large amount of approaches

developed that carry out robust single-mobile-DOA esti-
mation using a hardware-light setup [17-19]. On the other
hand, there are important approaches in carrying out
multi-mobile-DOA estimation which employ hardware-
heavy solutions (which require specialized audio inter-
faces). It is important to mention that hardware-heavy
approaches are practical for some applications; there
are those that aim to conduct the audio acquisi-
tion once and process it offline, such as acoustical imag-
ing [34] where it is not unusual to see 1,000-microphone
arrays being used and no real-time localization is
required.
The latter type of approaches (hardware-heavy) could be

divided into two types of approaches: beamforming-based
techniques and advanced statistical techniques.
An effective beamforming-based technique for multi-

mobile-DOA estimation can be found in [35,36] and is
somewhat representative of its type of approach. The idea
is to create a noise map of the environment (or an acous-
tic map [31]) and then, by using metrics such as energy
levels, propose possible sources of sound and their respec-
tive DOAs. It, technically, carries out a basic form of
sound separation throughout all possible directions and
then ‘decides’ which directions are valid sound sources
and which are not. A good example of this decision is
presented in [37] where, assuming there are only two
sound sources in a meeting room, the beamforming tech-
nique ‘decides’ which sound source is assigned to which
sound source class. These decisions are carried out at
specific intervals, with which several methodologies can
be employed for tracking purposes, such as Kalman fil-
ters [18] or particle filtering [38]. Another technique that
is somewhat related to this type of approach, discussed
and refined in [39], is known as the position-pitch (PoPi)
plane, where, instead of mapping energy values onto the
directional plane, a pitch spectrum is estimated per direc-
tion, providing possibilities to jointly estimate the DOA
and pitch of sound sources, which, in turn, provides addi-
tional information to locate more than one source in the
same direction.
As a whole, the beamforming type of approach has a

pervasive issue: to increase precision and the quality of
the validity metrics, it requires to obtain a high-resolution
noise/acoustic map in both the amount of directions to

search for and the quality of the separated sound from
such directions. The sound quality requirement of the
high-resolution map in turn requires a large quantity of
microphones, since the quality of the separated sound is
mainly defined by the signal-to-interference ratio (SIR),
which is bound by the amount of microphones employed.
This bound is summarized as ‘the more microphones,
the higher the quality’. Another important issue with this
type of approach is that a balance needs to be struck
between high-resolution maps and amount of computa-
tion resources required, since a high resolution results in
a big search space where valid sound sources are to be
found.
The techniques that approach the multi-mobile-DOA

estimation problem by applying advanced statistics mostly
rely on some variation of the popular technique known as
Multiple Signal Classification (MUSIC) algorithm [1]. It
carries out multi-static-DOA estimation by projecting the
received signals in a DOA subspace, based on their eigen-
vectors, similar to principal component analysis (PCA).
Although it has been widely reported that its performance
decreases considerably in the presence of reverberation
[25], it has been continuously enhanced in both resolution
and computational costs [7], in handling mobile sources
[40], as well as in handling an office-type amount of rever-
beration [10]. However, an important issue is that it is
only able to estimate the DOA of as many sources as one
less the amount of microphones (e.g., one source with two
microphones, two sources with three microphones, etc.).
This is because having more sources than microphones
invokes the well-known ‘more variables than observations’
issue in PCA-based methods. In fact, it could be argued
that if any sound interference may unexpectedly appear
in the acoustic scene (which is not out of the ordinary
in some scenarios) and, thus, increment the amount of
sources in the acoustic scene over its upper limit, it could
present instability issues in all of the provided estimations.
Thus, to avoid this issue, the rule of thumbwhen using this
type of techniques is ‘just in case: the more microphones,
the better’.
As it can be seen, there is an apparent tendency of

employing hardware-heavy solutions to carry out multi-
mobile-DOA estimation, while employing hardware-light
solutions for single-mobile-DOA estimation. The pro-
posed approach is a hardware-light solution that is able
to carry out multi-mobile-DOA estimation, which we
believe may be of interest to several areas of application
and the audio processing community.

3 Background on simultaneous speech signals
As mentioned in Section 1, the proposed system assumes
that the sound sources are from speech sound sources.
This is taken advantage of, as detailed in the following
section, for the purpose of multi-DOA estimation.
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The scenario in which multiple speech sources are
active simultaneously is bound to occur. Such is the
case of crowded places (such as bars, restaurants, open-
cubicle offices, etc.), where people are not participat-
ing in the same conversation but are near one another.
However, it has been seen that users do not talk over
each other with a 100% overlap. In fact, when analyz-
ing speech recognition, ‘spurts’ of non-overlapping speech
has been observed to last up to 500 ms [41]. For exam-
ple, in Figure 2, two randomly chosen recordings from
the DIMEx100 Corpus [42] are chosen. It can be seen
that, even though these recordings are not from the
same conversation (which is a very difficult scenario
for multi-DOA estimation), when overlayed over each
other, there are some portions with no overlap between
them.
This means that a single-DOA estimation solution that

is not only robust against multiple sources, but is also
sufficiently fast to ‘catch’ these single-source windows,
would be able to provide reliable results of single sources
even in multiple-simultaneous-speech scenarios. How-
ever, because of the stochastic nature of the presence of
single-user time blocks in the simultaneous audio time-
line, such results would be provided in a sporadic fashion.
Thus, these DOAswould be required to be ‘grouped’ after-
wards and then be proposed as sound source directions,
as it is carried out in the proposed system, detailed in the
following section.

4 Proposed system
The proposed system uses a ‘divide and conquer’ strat-
egy to solve the multi-DOA estimation challenge. It first
provides a reverberation-robust DOA estimation of a sin-
gle source, even in multi-source environments. It then
takes advantage of the fact that even with simultaneous
speech sources, there is not a 100% overlap between them.
This means that the provided single-DOA estimations are
being estimated from different sources but are ‘given’ in a
stochastic manner. Thus, the objective of the next stage is
tomake sense of the incoming single-DOA estimations, by
associating them to tracks or spawn new ones. The asso-
ciated DOAs are then used to estimate a DOA for each
track via Kalman filtering.
The proposed system is comprised by three modules:

1. Audio acquisition and pre-processing. Obtains audio
data from the microphones and provides it to the
single-DOA estimation module.

2. Single-DOA estimation. Estimates, from the audio
data, a fast-but-reliable DOA estimation of a single
sound source in the environment.

3. Multi-DOA tracking. Arranges the incoming
single-DOA estimations from the single-DOA
estimation phase into groups that are to be reported
as sound sources with a Kalman-filtered DOA.

The data flow in the whole proposed system is summa-
rized in Figure 3.

Figure 2 Non-overlapping simultaneous speech. An illustrative example of how even in simultaneous speech there is not a 100% overlap, a fact
that can be taken advantage for multi-DOA.
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Figure 3 The flow of data throughout the proposed system. The audio data flows through a band-pass filter, voice activity detection (VAD) stage,
the single direction-of-arrival (DOA) estimation (which includes multiple inter-microphone time-difference (Multi-ITD) calculation, a redundancy
step, and single-DOA calculation), and the multiple direction-of-arrival (DOA) tracking (which includes DOA-to-track association, track updating, and
track maintenance).

4.1 Hardware settings
To avoid the problems that arise when estimating a DOA
using 1D microphone arrays (described in Section 2) and,
at the same time, to maintain a hardware-light configura-
tion, an equilateral triangular array is used, as shown in
Figure 4. As it can be seen, the array maintains the free-
field assumption, i.e., there are no objects inside the array
that may diffract the sound waves coming into the the

three microphones. Figure 5 presents one of the scenarios
in which the system was tested.

4.2 Audio acquisition and pre-processing
As described in the last section, an equilaterial triangular
array is used. Thus, the audio acquisition in the proposed
system requires that the audio from three microphones be
acquired simultaneously, in real time. For this purpose, the

Figure 4 Microphone array setup of the proposed system and its coordinate system. The setup uses an array with three microphones, in a 2D array
positioned horizontally. There are two coordinate systems being used: the local coordinate system per microphone array Dl;xy that uses the front of

the pair as its reference, and the global coordinate system D[0]
l;xy that uses the front of the whole array as reference.



Rascon et al. EURASIP Journal on Audio, Speech, andMusic Processing  (2015) 2015:11 Page 7 of 16

Figure 5 The anechoic chamber testing scenario of the proposed
system. This scenario set in the anechoic chamber was one in which
the system was tested. It shows that there are no diffracting objects
inside the microphone array.

JACK Audio Connection Toolkit [43] was employed for
audio capture. It can sample at rates of 44.1 and 48 kHz,
providing a good resolution for ITD calculations, with-
out slowing down other software modules running in the
same computer.

4.2.1 Band-pass filter
Since the focus of the multi-DOA estimation system is to
estimate the direction of speech sources, a general infinite
impulse response band-pass filter is used at the beginning
of the process to remove general ambient noise that is out-
side the human speech frequency bands (between 1 and
4 kHz). Thus, sound sources that are outside of this fre-
quency range are rejected. This filter was designed using
a single Butterworth-based second-order solution.

4.2.2 Voice activity detection
To trigger the single-DOA estimation described in the
next section, voice activity detection (VAD) needs to be
carried out. A state-based VAD is proposed which can
be in one of two possible states: SILENCE and NON-
SILENCE, whose switch is triggered when the current
energy values (obtained by averaging the values of the
three microphones of a whole sample window) cross a
pre-specified threshold (tchange) above the noise energy
value (enoise; obtained by averaging the most recent energy
values before the state change, ehist). When in NON-
SILENCE, a sub-state ACTIVE can be achieved by sur-
passing an additional threshold (tvad). The reasoning
behind the ACTIVE sub-state is that in this manner, a
‘precedent’ of the noise energy value is set and such sub-
state is only activated when the audio energy is over
that value during the whole time the system is in the

NON-SILENCE state. enoise is ‘reset’ every time there is a
state change, providing robustness in dynamic scenarios.
Some considerations are now presented and discussed (all
energy values are in the linear scale of 0 dBFS):

ehist : The amount of energy values stored in ehist will
determine the VAD flexibility to changes in the noise level
while also determining how much information is used to
estimate the environmental noise. In [44], it was shown
that moderately long time segments (750 ms) were prefer-
able for estimating real types of noise. If using windows
of 4,800 samples, and sample rates of up to 48 kHz, it is
advisable to use more than eight energy values to store in
ehist for realistic scenarios.

tchange : Since tchange defines if a sound should be detected
or not, its value is strongly linked to the signal-to-noise
ratio (SNR) of the signals that are desired to be detected.
A small value will detect more signals, but more poten-
tial noise will go through; a high value will be more strict
but potentially will not let actual source signals through.
It is advised to use an SNR value over the amplitude ratio
of 1 (1 dB) but lower than 2 (6 dB), to be adequate in
noisy environments (since high SNRs cannot be expected
in such circumstances). Thus, having measured the aver-
age noise level in the environment and having chosen a
desired SNR value, a value of tchange (in the linear scale of
0 dBFS) can be calculated using:

tchange = 10(SNR+N)/20 − 10N/20 (2)

where N is the noise level in dBFS and SNR is the desired
signal-to-noise ratio in dB. In addition, to be certain that
the activated sample windows are of a signal of consid-
erable energy, the ACTIVE sub-state should be triggered
with a tvad such that tvad � tchange.

4.3 Single-DOA estimation
Once the VAD reaches an ACTIVE state, the single-DOA
estimation is triggered. This phase is divided into an ITD
calculation, a pairwise DOA estimation stage, redundancy
check, and single-DOA calculation described herein.

4.3.1 ITD calculation
In this stage, ITD calculation is carried out between
signals captured in pairs of microphones, based on a
variation of the reverberation-robust generalized cross-
correlation with phase transform [26].
Equation 1 is a time-based version of the Pearson-based

cross-correlation method. Its frequency-based equivalent
is presented in Equation 3.

CCVF [ f ]= X[ f ]Y [ f ]∗ (3)
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where X and Y are the Fourier transforms of the
hamming-windowed x and y signals of Equation 1, respec-
tively; f is the frequency bin; and the ∗ operator stands for
the complex conjugate operation.
The resulting cross-spectrumCCVF relates to the cross-

correlation vector CCV via the Fourier transform, such
that CCVF = F(CCV). Thus, the size of the resulting
CCV will be dependent on the size of the sample window.
The generalized cross-correlation (GCC) applies a

weighting function (ψ[ f ]) to Equation 3 to improve CCV
calculation. In the proposed approach, the weighting
function used is shown in Equation 4.

ψ[ f ]=
{

1
|X[f ]Y [f ]∗| , if fmin < f < fmax

0 , otherwise
(4)

where, if the first condition is reached (in our case, fmin
is 1 kHz and fmax is 4 kHz), ψ[ f ] applies the phase
transform [27,28] (canceling out the magnitudes of both
signals to estimate delta functions in the CCV domain).
If not, the information from unused frequency bands is
filtered to reduce estimation errors when carrying out
CCV = F−1(CCVF). It is important to note that this
rectangular cross-spectrum filtering introduces in the
cross-correlation a leak in the CCV space, which means
that some CCV bins may suffer some distortion. How-
ever, this type of distortion does not increase the value
of the distorted bins to the point of being higher than
the highest values of the CCV, and since the k index with
the highest correlation value in the CCV (kmax) is pro-
vided as the ITD of the two signals (Ixy), this is not an
issue. As it can be gathered, the weighting is uniform
inside the [fmin, fmax] range, which can result in providing
the same weights to a noisy frequency bin as to one that
belongs to a speech source. Although automatic weight-
ing in this step could be possible, it would require online
noise estimation which is not carried out in this version of
the proposed system. It is definitely being considered for
future versions, though.
In addition, to avoid providing ITDs of reverb-bounces

or noise sources, this part of the system only provides
an ITD if its correlation value is higher than the CCV
mean (CCV) plus a pre-specified threshold (Cthresh), thus
Ixy = kmax. If CCV[ kmax] is not higher than that, it is
considered a ‘noisy’ ITD, and no ITD value is provided,
thus Ixy = NULL. The selection of Cthresh should consider
three points: 1) Although the theoretical lower bound for
Cthresh is 0, choosing this value would result in erroneous
ITD calculations in silent sample windows that are con-
sidered active after the sound source has become inactive,
as only ambient noise would be present. 2) Although its
theoretical upper bound is 1 − CCV, correlation values
near 1 in real circumstances are rare; thus, a more practi-
cal generally applicable upper bound is 1. 3) A worst case

scenario would be to have a large amount of values very
close to CCV[ kmax] (expected with noise/high reverbera-
tion), which in turn would result in CCV having a value
very close to CCV[ kmax]. Thus, to avoid filtering out cor-
rect ITD estimations in such scenarios, Cthresh should be
very small compared to its upper bound and very close to
its lower bound, meaning 0 � Cthresh � 1.
It is important to note that, even though the IIR filter

that precedes this step is rejecting information from out-
side the 1- to 4-kHz range, the resolution of the CCV (aka.
the spatial resolution) is not hindered, since, in this case,
it is highly dependent on the sample window size. Thus,
a large window size (such as 4,800) is preferable for the
purpose of having a high spatial resolution, in conjunction
with a high sample rate (such as 48 kHz) to not hinder the
overall responsiveness of the system.

4.3.2 Pairwise DOA estimation
Using the ITD calculation procedure, three ITDs are cal-
culated between sample windows obtained from micro-
phones R and L (IRL), L and F (ILF), and F and R (IFR). If
any ITD is NULL, the window set is discarded. Otherwise,
a local DOA (Dl;xy) is calculated from each ITD (Ixy) using
Equation 5.

Dl;xy = arcsin
( Ixy Vsound
Fsample d

)
(5)

where x and y are identifiers of the signals received from
the microphones R, L, or F; Vsound is the speed of sound
(343 m/s); Fsample is the sampling rate (in Hz); and d is the
distance betweenmicrophones (in m). All DOAs (referred
to with the base notation D) hereafter are expressed in
degrees.
It is important to note that this model assumes a planar-

type sound wave, which in turn assumes that the sound
source is located in the far-field region of the micro-
phone array. If rsource is the distance of the sound source
to the center of the array and rmic is the distance of any
microphone to the center of an equilateral array, then the
far-field requirement is rsource � rmic [45]. This means
that small array sizes (d = 2rmic cos(30°) < 0.25 m) are
preferable to satisfy the far-field assumption in appropri-
ate conversation scenarios (rsource ≈ 0.70 m). In the case
of the proposed system, because of the use of large sam-
ple windows, the CCV maintains a high resolution even
with small array sizes. However, since the following calcu-
lations only require the resulting Dl;xy to carry on, other
models (such as near-field techniques) could be used in
place of Equation 5 without requiring any further modifi-
cations to the proposed system and is definitely cause for
future work.
Having calculated Dl;xy, a pair of global DOAs (D[0]

g;xy
and D[1]

g;xy) are then calculated using Equations 6, 7, and 8.
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As described in Figure 4, while the local DOA Dl;xy pro-
vides an angle from the perspective of the microphone
pair alone, the global DOAs provide an angle from the per-
spective of the whole array. Specifically, D[0]

g;xy is the global
DOA calculated as if Dl;xy was coming from the front of
the xymicrophone pair, and D[1]

g;xy as if it was coming from
the back.

D[0]
g;RL =

{
0◦ , if Dl;RL = 0◦

−Dl;RL , otherwise

D[1]
g;RL =

{ −180◦ + Dl;RL , if Dl;RL > 0◦
180◦ + Dl;RL , otherwise

(6)

D[0]
g;LF =

{
Dl;LF − 240◦ , if (120◦ − Dl;LF) > 180◦
120◦ − Dl;LF , otherwise

D[1]
g;LF = Dl;LF − 60◦

(7)

D[0]
g;FR =

{
Dl;FR + 240◦ , if (−120◦ − Dl;FR) >180◦

−120◦ − Dl;FR , otherwise

D[1]
g;FR = Dl;FR + 60◦

(8)

4.3.3 Redundancy check

The three global DOA pairs
([

D[0]
g;RL,D

[1]
g;RL

]
,
[
D[0]
g;LF,

D[1]
g;LF

]
,
[
D[0]
g;FR,D

[1]
g;FR

])
are used to check if the three ITDs

are from a sound source located in the same angle sec-
tor as a type of rejection step. To do this, the average of
the differences between the DOA pairs (Epqr) is calculated
using Equation 9.

Epqr =
|D[p]

g;RL − D[q]
g;LF| + |D[q]

g;LF − D[r]
g;FR| + |D[r]

g;FR − D[p]
g;RL|

3
(9)

where p, q, and r, each, can be either 0 or 1. This provides
eight possible Epqr , the lowest of which is considered the
incoherence of the sample window set. The global DOA

set that is represented in the minimum Epqr , meaning[
D[p]
g;RL,D

[q]
g;LF,D

[r]
g;FR

]
, is proposed as the DOA set for this

window sample set.
A pre-specified incoherence threshold (Ethresh; measured

in degrees of separation between the DOAs) is used to
reject sample window sets. A high incoherence implies
that there is an absence of ‘consensus’ in the sample win-
dow set for a DOA estimation, usually caused by having
too much noise on the CCVs because of interferences in
the acoustic scene or more than one source being active.
This rejection step serves as a type of redundancy check
per sampling window set. The selection of the value of
Ethresh depends on the minimum ITD-DOA resolution of
each microphone pair, since the global DOAs may pro-
vide an angle calculated in different regions of Equation 5,
which in turn depends on Fsample and d. This mini-
mum resolution is calculated by obtaining the difference
between the DOA calculated with the highest possible
ITD and the DOA obtained with the second highest pos-
sible ITD. In addition, ITD errors can occur in the range
of ±1 bins. Thus, the worst case scenario is calculating a
DOA in the minimum resolution range while having an
ITD error. To this effect, a value for Ethresh that is not too
small to reject window sets that may be sufficiently coher-
ent, while rejecting those that are, is found around twice
the minimum resolution.
As an example, Figure 6 shows two examples of two dif-

ferent data sets. The example shown in Figure 6a shows
the scenario of two sources being active, which produces
a highly incoherent set with no

[
D[p]
g;RL,D

[q]
g;LF,D

[r]
g;FR

]
com-

bination ‘pointing’ to a clear direction. On the other hand,
Figure 6b shows the scenario of having only one source
active (for a brief moment, the other source became inac-
tive), which results in having a data set configuration with
very low incoherence, which is

[
D[1]
g;RL,D

[0]
g;LF,D

[1]
g;FR

]
, with

the combination p = 1, q = 0, r = 1.

4.3.4 Single-DOA calculation
If the sample window set is considered coherent, its
reported DOA value (θ ) is chosen from the member of

Figure 6 Incoherence example. (a) An example of a highly incoherent data set is presented, due to having two active sources. (b) A data set with
very low incoherence is shown, with configuration p = 1, q = 0, r = 1, due to one of the sources being inactive at that brief moment.
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its DOA set
[
D[p]
g;RL,D

[q]
g;LF,D

[r]
g;FR

]
whose ITD from which it

was calculated has the lowest absolute value (IRL, ILF, IFR).
This decision ensures that θ is based upon the micro-

phone pair that is the most perpendicular to the source,
and because of the equilateral nature of the triangular
array, this implies that it is always estimated using a local
DOA (Dl;xy) with a value inside the −30° to 30° range,
well within a close-to-uniform area of Equation 5. Thus,
the proposed system will always have a nearly uniform
resolution between ITD and DOAs, which will result in
low error rates throughout the −179° to 180° range, over-
coming the issue of loss of resolution when the sound
sources are located in certain directions relative to the
array (detailed in Section 2).

4.4 Multi-DOA tracking
The single-DOA estimator described in the previous
section only provides results when there is considerable
confidence of only one sound source being detected in a
small sample window (up to 100 ms).
As described in Section 3, simultaneous speech has

a non-overlapping nature, which means that the single-
DOA estimator would be able to provide reliable results
of single sources even in multi-user scenarios. However,
these results would be provided in a sporadic fashion,
as the presence of single-user sample windows in the
simultaneous audio timeline is stochastic.
The objective of the final phase of the proposed sys-

tem is to gather these sporadic DOAs, associate them into
existing tracks or new ones, and use such information to
estimate their current location. This approach is based on
radar tracking techniques [46] that are useful when try-
ing to report data from different targets using consecutive
radar observations.
For each sample window, 1) if deemed coherent, the

single-DOA estimator will provide at most one DOA esti-
mation, and 2) the multi-DOA tracker will update. Each
update of the multi-DOA tracker goes through four steps:
Single-DOA estimation to track association. This is

solved via an acceptance gate approach (similar to nearest
neighbor), in which the incoming single-DOA estima-
tion is compared to the estimated DOA of all pre-
existing tracks (the manner in which these are estimated
is explained in the ‘Track update’ step). The single-DOA
estimation is associated to its nearest track, only if the
angular distance between them is below a pre-specified
threshold (the same threshold used for redundancy check
in the ITD estimation). If no track is within that thresh-
old, a new track is spawned with only the single-DOA
estimation associated to it.
Track update/smoothing. All tracks are updated, regard-

less of having new associations or not. This is carried out
by estimating the current DOA by solely using the DOAs
that are associated with it, and, thus, reporting multiple

simultaneous estimations per sample window. To model
the movement of the speech sources, we consider linear
dynamic and measurement models, with the state-space
representation presented in Equation 10:

st+1 = Ast + w
mt = Hst + v

, (10)

where st is the dynamic state vector, mt is the measure-
ment vector, A is the transition matrix, H is the measure-
ment matrix, and w ∼ N (0,Q) and v ∼ N (0,R) are
zero-mean process and measurement noises with covari-
ances Q and R, respectively. The state vector st =
[ st ,mt , ṡt , ṁt]T contains the Cartesian coordinate and
velocity of the DOA, and the transition and measurement
matrices are defined in Equation 11:

A =

⎡
⎢⎢⎣
1 0 Sw 0
0 1 0 Sw
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , H =

⎡
⎢⎢⎣
1 0
0 1
0 0
0 0

⎤
⎥⎥⎦ (11)

where Sw is the size of the sample window in seconds.
The estimation of the system state is carried out via the
Kalman filter technique [47]. It was chosen since it pro-
vides an optimal and efficient solution for linear Gaussian
models, such as the one being used here (see [46] for
details). In addition, it reduces the influence of ‘noisy’
DOAs associated with the track, which is helpful in the
case of close sources.
Track initiation. If the single-DOA estimation was

not associated to any pre-existing track, a new track is
spawned with this single-DOA estimation associated with
it. However, the track is labeled as tentative until it has
enough DOAs associated with it. What defines the final
responsiveness of the system is the amount of DOAs
associated with a new track such that it can be labeled
confirmed (ndoa). To avoid providing ‘noisy’ tracks, more
than 1 DOA is recommended. Since the single DOAs are
provided stochastically, an upper bound for this value is
difficult to set; however, values close to 1 will provide
greater responsiveness. Thus, ndoa � 1 is a good rule of
thumb.
Track maintenance. If a speech source goes inactive, it

is important for the system to stop reporting it, to avoid
false positives. However, it is also important to be robust
against situations in which the speech source went inac-
tive temporarily. Thus, a track is labeled again as tentative
if a number of sample windows have gone by without
any new association (nmissed). As described in Section 3,
‘spurts’ of non-overlapping speech has been observed to
last up to 500 ms [41]. Thus, a value of sample windows
that represents such an amount of time provides a good
balance between responsiveness and low false positives.
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5 Evaluationmethodology
Four evaluation strains were carried out, each with its
own objective, using an evaluation corpus based on the
DIMEx100 Corpus [42], called AIRA.
The following parameter values were used during all

evaluations:

• Sampling rate: 48 kHz
• Sw: 0.1 s (4,800 samples)
• ehist: calculated using ten energy values
• Cthresh: 0.03645 (175 in an unnormalized FFT vector

of 4,800 samples).
• Ethresh: 30°
• ndoa: 2
• nmissed: 5

The results of these evaluations are discussed in Section 6.

5.1 Anechoic chamber with static sources
To evaluate if the algorithm is able to detect the num-
ber and DOA of simultaneous speech sources, several
experiments were carried in a 5.3 m × 3.7 m × 2.8 m
full-anechoic chamber of the Laboratorio de Acústica y
Vibraciones of the Centro de Ciencias Aplicadas y
Desarrollo Tecnológico (CCADET) of the Universidad
Nacional Autónoma de México (UNAM), a detailed
description of which can be found in [48].
In this evaluation setting, the number of sources was

varied from 1 to 4 in several positions in the whole hor-
izontal degree range. For each number of sources, ten
sessions were carried in which randomly chosen voice
recordings from the DIMEx100 Corpus were reproduced
for 30 s at 0 dB gain through studio-grade monitors acting
as speech sources placed at 1 m away from the center of
the triangular array. The microphones were set at 0.18 m
apart, with 0 dB gain in the audio interface. The aver-
age sound level received at each microphone during voice

activity was around −22 dBFS. Since the amount of noise
inside the anechoic chamber was very low, the values for
tchange and tvad required to satisfy tchange � 0, and tvad �
tchange (0.0005 was chosen for both). Figure 5 shows a
photograph of the testing environment.
Two evaluation metrics were calculated:

Number and location of sources For each session, a sound
source was considered as ‘estimated’ if it was detected
for at least 25% of the duration of the session (30 s). If a
source is estimated within a ± 15° range of the expected
direction of an actual sound source, it is considered a true
positive. If a sound source is estimated outside that range
from an actual sound source, it is considered a false posi-
tive. If an actual sound source is not estimated during the
experiment, it is considered a false negative. Using these
metrics, the precision, recall, and F1 scores [49] (Chapter
8) of the proposed system’s ability to detect sound sources
are calculated.
Average error Once estimated, an average absolute error
is calculated for every sound source that is deemed true
positive, from the direction it is actually located.

In Table 1, these scores are provided per set of experi-
ments.

5.2 Real acoustic setting with static sources
In the past evaluation, the evaluation was carried out in
a controlled acoustic setting. However, it is important to
measure the performance of the proposed approach in a
real acoustic setting. An open-cubicle office was chosen
for this test: 5.9 m × 7.9 m × 2.1 m (photo in Figure 7),
with a typical indoor reverberation (RT60 = 0.47 s ) and
some presence of noise (−45 dBFS with 0 dB gain in
microphones). A desired SNR for the VAD phase was set
at 2.75 dB (for high sensitivity); thus, a tchange of 0.002 (in
the linear scale of 0 dBFS) was used to achieve that, and a
tvad of 0.004 was used, satisfying tvad � tchange.

Table 1 Evaluation results reported in F1-typemeasure and average errors in the anechoic chamber

# of sources Recall (%) Precision (%) F1 (%) Average errors Actual DOAs
(in degrees) (in degrees)

1 100 100 100 1.22 45

2 100 100 100 7.36 −30

3.49 90

3 90.00 100 94.74 7.15 −30

3.50 90

2.80 −150

4 72.22 100 83.87 0.04 0

1.25 90

0.61 180

0.53 −90
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Figure 7 Office A photograph. A photograph of the office A test
scenario. The microphone array was set in the middle open space.

The same type of evaluation as in the ‘Anechoic cham-
ber with static sources’ evaluation was carried out in
this acoustic setting, while having the microphones set
at 0.21 m apart and varying the number of simultane-
ous sources from 1 to 4 that were placed 1 m away from
the center of the array. The average SNR captured during
these experiments was of 21 dB. The results are shown in
Table 2.

5.3 Real acoustic setting with mobile sources
To evaluate the performance of the proposed approach
with mobile sound sources, pre-specified randomly cho-
sen sentences from the DIMEx100 Corpus read by expert
volunteers were recorded while they weremoving in a pre-
specified manner around the recording station in another
open-cubicle office of size 10.5 m × 5.9 m × 2.1 m, which
is divided into three 3.5-m-wide spaces that are acous-
tically connected. However, in acoustic terms, it is very

similar to the acoustic scenario of the ‘Real acoustic set-
ting’ evaluation. Their main difference is that there are
walls much closer to the microphone array (photo in
Figure 8), amplifying moderately the effects of reverber-
ation (RT60 = 0.51 s), and it had slightly more noise
(−41 dBFS with 0 dB gain in microphones). The SNR
captured during these experiments was 17 dB. The same
tchange and tvad values as in the ‘Real acoustic setting’ eval-
uation were used. The microphones were also set 0.21 m
apart.
An approximation of the movement of each source was

calculated. Then an estimated acoustic scene description
file was created that describes an approximation of a lin-
ear trajectory around the audio acquisition base, with start
and stop times and DOAs. Because of this limitation,
the movement of the sound source was limited to simple
‘go from left to right’ (or vice versa) trajectories so their
approximations can be considered representative of their
real trajectories.
Figures 9 and 10 present a representative plot of the

tracking carried out by the proposed approach with one
and two mobile speech sources respectively presented
over the expected behavior (plotted as dashed lines).
An evaluation similar to the ‘Anechoic chamber with

static sources’ evaluation was carried out, only that in
this case the average errors, true positives, false positives,
and false negatives were reported from the reference of
the expected trajectory previously described, instead of a
static value. These scores are provided in Table 3.

5.4 Resource requirements
The implementation of the proposed approach occu-
pies a 14.6 MB memory footprint, which includes a
graphical interface for data visualization. In addition, the
proposed system occupies up to 7% of the CPU resources
when active. To put this in perspective, the ManyEars
application [12], running in the same machine, occupies

Table 2 Evaluation results reported in F1-typemeasure and average errors in an office-type acoustic setting with static
sources

# of sources Recall (%) Precision (%) F1 (%) Average errors Actual DOAs
(in degrees) (in degrees)

1 100 100 100 2.77 0

2 65.00 100 78.79 8.25 −30

0.07 90

3 56.67 100 72.34 2.53 −30

0.32 90

0.67 −150

4 45.00 94.74 61.02 1.89 0

1.27 −90

0.50 180

3.97 90
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Figure 8 Office B photograph. A photograph of the office B test
scenario. The microphone array was set in the table in the middle
open space.

a 38.6 MB memory footprint and up to 61% of the CPU
resources. This implies that the proposed approach is
carrying multi-DOA estimation, with high F1 scores and
low error rates, using a very small resource footprint.

6 Results discussion
As it can be seen in Tables 1, 2, and 3, in most circum-
stances, the average error is very low (<±5°). This is the
result of the fact that the resulting θ from the single-DOA
estimator is calculated from the ITD of the microphone

pair most perpendicular to the sound direction. Consider-
ing the triangular geometry of the microphone array, this
results in having this ITDwell within the close-to-uniform
range area of Figure 1, providing a uniform resolution for
the resulting θ .
Another observation is that the performance of the pro-

posed system decreases as more sources are in the envi-
ronment, which is to be expected. However, the decrease
was not as pronounced when in the anechoic cham-
ber. This implies that reverberation/noise is an important
influence in the proposed system. When observing the
precision and recall metrics, it can be observed that the
addition of more sources affects the recall metric much
more then it does the precision metric. An explanation
for this is that the chance of single-user sample win-
dows occurring will tend to decrease when the number
of sources there are in the environment increases, result-
ing in false negatives. However, varying the number of
sources does not affect the precision scores as much (if at
all), which implies that once a sound source direction is
reported, it is highly likely that it is an actual sound source.
This is evidence of the effectiveness of 1) the coherence-
based redundancy measures and 2) the application of the
variations to the phase transform in the GCC calculation.
Both measures filter out noisy sources and reverberation
bounces and, thus, provide a relatively high amount of true
positives.
It can also be seen that there was a near 20% decrease

in the F1 metric when moving from an anechoic environ-
ment (Table 1) to a realistic one (Table 2), per test. For
example, the F1 score for two sources went from 100%

Figure 9 Office B with one source. A representative plot of the tracking carried out by the proposed approach of the acoustic scene office B with a
source moving from 90°, passing through 0° and ending at −80°.
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Figure 10 Office B with two sources. A representative plot of the tracking carried out by the proposed approach of the acoustic scene office B with
a source moving from 90°, passing through 0° and ending at −80°, and another source moving −90°, passing through 180° and ending at 100°.

in an anechoic chamber to 78.79% in the office environ-
ment. This 20% decrease is consistent throughout most of
the multi-DOA experiments, which, although significant,
can be considered reasonable since the difference between
both scenarios is quite notable. Moreover, it is worthmen-
tioning that the system performed admirably in all the
scenarios with one source, which is the baseline of a good
multi-DOA estimation solution. Likewise, it is important
to note that the system was able to carry out multi-DOA
estimations with more static sources than microphones in
a realistic environment.
In addition, when going from a realistic environment

with static sources (Table 2) to one with mobile sources
(Table 3), the decrease in the F1 metric is not as signif-
icant, which implies that the movement of the sources
does not affect the performance of the proposed system
as much as the noise/reverberation does (if at all). Fur-
thermore, as evidenced in Figures 9 and 10 and Table 3,
although the tracks are considerably ‘noisy’, it can be seen
that the proposed approach is able to track the movement
of the sound sources in a realistic acoustic environment

and, more importantly, it is doing so with more than one
mobile source, using a few-microphone solution, and with
a small resource footprint requirement.
It is important to note that the recall score definitely

calls for improvement. However, we believe that the pro-
posed system, in the overall sense, has struck a bal-
ance that is ideal for real acoustic conditions and speech
sources, since noise and reverberation are consistently
‘tuned out’ by the system while keeping track of the sound
sources that are coherent and active. In fact, even if at
the moment it may call for improvement, the level of
performance the system is showing can currently benefit
applications such as complementing the ASR of a service
robot serving as a waiter in a restaurant [23], or in the
analysis of the acoustic scene of a cocktail party, or in the
design of hearing aids.

7 Conclusions
Multiple direction-of-arrival estimation can benefit a
large array of audio applications. Current approaches tend
to either be able to track multiple mobile sound sources

Table 3 Evaluation results reported in F1-typemeasure and average errors in an office-type acoustic setting withmobile
sources

# of sources Recall (%) Precision (%) F1 (%) Average errors Estimated trajectory

(in degrees)

1 100 100 100 6.56 90° → 0° → −80°

2 60.00 92.31 72.73 7.10 90° → 0° → −80°

8.73 −90° → 180° → 100°
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using hardware-heavy solutions or use lightweight tech-
niques to track one mobile sound source.
The proposed approach is based upon our earlier work

and is now able to track, in reverberant scenarios, multi-
ple moving sound sources while being hardware-light. We
believe this is of interest in several areas of applications as
well the audio processing community.
The technique carries out multi-DOA estimation by

taking advantage of the fact that simultaneous speech
sources do not completely overlap over each other and,
thus, employs a ‘divide and conquer’ strategy. It first
performs a quick-but-robust single-DOA estimation with
single-source sample windows and then proposes sound
source tracks from incoming single-DOA estimations. For
each track, a Kalman filter is created to estimate the
movement of the sound source the track represents.
To evaluate the performance of the proposed approach

in a real-life acoustic scene, but in a consistently repeat-
able manner, the AIRA corpus was created in conjunction
with an evaluation methodology based on the F1 score.
It presented very good results in terms of the precision
metric, thanks to its redundancy measures, the varia-
tions of the phase transform while carrying out GCC,
and that it is always estimating a direction in the close-
to-uniform range of the ITD-to-DOA function. These
results confirmed that the proposed approach is able to
track more than one source while using a small amount of
microphones, in several acoustic scenarios.
For future work, we plan to improve upon the results

presented here in terms of the recall metric, as well as in
the manner of reducing its noisiness and responsiveness.
One way to do this is by carrying an automatic weight-
ing to remove noisy influences during the calculation of
the GCC-PHAT. Another is to investigate other types of
ITD-to-DOAmodels, specifically near-field techniques so
that the proposed system is usable in more types of appli-
cations. In addition, it is of interest to develop a much
more sophisticated DOA-to-track association technique,
since it is very probable that such associations will break
when having sound sources cross each other; however it is
also important to maintain the low footprint requirement
in such associations, which, unfortunately, is not satisfied
by current techniques (such as the ones based on parti-
cle filters). We also plan to implement a stricter evaluation
methodology for moving sources, providing a more rep-
resentative evaluation metric for their tracking. Although
keeping the number of microphones low is an important
topic of this work, we plan to explore the addition of
microphones to this solution for the DOA estimation in
a 3D space to broaden the range of fields of where this
approach can be applied. Moreover, we will explore its
implementation in some of the aforementioned applica-
tions, specifically in the area of hearing aid design, where
the small amount of microphones has been a limiting

requirement. Another applicable area is that of Bioacous-
tics, by carrying census of animal species that interact
with each other by song (birds, marine mammals, etc.) in
acoustic scenarios that are far more dynamic and complex
than the ones presented in this work and do not assume
the presence of speech sources.
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