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Abstract

Sound source localization is important in human interac‐
tion, such as in locating the origin of long-distance calls or
facing other humans while in a conversation. It is of interest
to apply such functionality to the core of human-robot
interaction (HRI) and investigate its benefits, if any. In this
paper, we propose three strategies for how to integrate the
functionality of multiple directions-of-arrival (multi-DOA)
estimation with a common scenario, in which the robot acts
as a waiter while applying audio source localization. The
proposed strategies are: a) the robot locates calls from users
at a relatively long distance; b) the robot faces the user when
taking the order; and c) the robot announces whether the
acoustic environment is not conducive to understanding a
speech command (mainly where more than one user speaks
at once). It was seen that users react favourably to the
functionality, and that it even has a noticeable influence on
the success of the interaction.
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1. Introduction

Sound source localization plays an important part of
human interaction, and thus it is of interest that it plays an
important role in HRI. Although there have been several

implementations of sound source localization in mobile
robotic platforms (which will be described in more detail
in Section 2), very few have delved into the specifics of how
to integrate such functionality with the overall scheme of
interaction between a human and a robot.

For this study, we will focus on the broadly-applied and
essential HRI aspect of taking an order from different
groups of users. There are many ways with which this class
of information can be obtained, depending upon the
current functionalities of the service robot. Face detection,
speech recognition, gesture identification, etc., are all
functionalities that can be used for this purpose. There are
also functionalities that can complement the order-taking
process, one of which is sound source localization.

In this paper, we explore three strategies, using the
functionality of multi-DOA estimation to complement the
process of obtaining an order from groups of users via
Automatic Speech Recognition (ASR):

• Contextualized long-distance calls. The robot is able to
estimate the origin of a call, for instance, “Waiter,
waiter!” in a restaurant. For this, it uses its own location
and the locations where users are most likely to be,
together with estimations of the DOA of sound sources.

• Facing the user. The robot faces the user when he/she
speaks. From the user’s point of view, it seems as though
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the robot is ‘paying attention’ to what he/she says, which
complements the interaction.

• Detecting multiple users. The robot identifies multiple
users speaking at the same time, and it lets them know
that is not the best acoustic environment to recognize
their orders.

These strategies, as well as their potential benefits, will be
described in more detail in Section 3.

The rest of the paper is organized as follows: Section 2 gives
a brief literature review of the use of multi-DOA estimation
to HRI as well as a description of the challenges of imple‐
mentation in a mobile robotic platform. Section 4 provides
a review of the technical aspects of our in-house service
robot, Golem-II+, and how multi-DOA estimation fits into
its cognitive architecture, as well as a description of how it
was implemented. Section 5 describes a case study of our
robot as a waiter, in which the aforementioned order-taking
aspects were the backbone of the interaction. Section 6
describes the evaluation of the integration of the proposed
strategies in the case study, as well as presenting its results.
Finally, in Sections 7 and 8, the results are discussed and
conclusions are presented.

2. Background of multi-DOA estimation in HRI

Multi-DOA estimation is a basic component of sound-
source localization, which is a vital ability in successfully
interacting with the environment. Since it is omnidirection‐
al and insensitive to occlusion and lighting conditions,
auditory perception provides important complementary
information to visual information for the identification and
localization of interesting or potentially dangerous events
in the environment. In fact, Perrot et al. [20] have pointed
out that the information of the auditory spatial system
serves as a guide to focus the attention of the visual system
towards acoustic events which are outside the visual field.
Humans in particular have a remarkable ability to localize
sound sources, which helps them sense dangerous situa‐
tions (e.g., identifying a car approaching) or perform social
interactions (e.g., paying attention to a another person who
is speaking).

2.1 Sound source localization applied in HRI

Sound source localization provides important information
that allows face-to-face communication and proper
interaction. Such behaviours in social interactions may
include paying attention to a new sound source, moving
towards it, or keeping facing a moving speaker.

Being aware of a speaker’s location has allowed computer
conversational systems to respond more naturally to users’
needs. This has led to different face-to-face communication
frameworks being proposed to enhance the interaction
between humans and embodied agents [2, 5, 4, 18] and
robots [32], although they have mostly been studied
using ’Wizard of Oz’ experiments. One example of a real

application of these frameworks is the embodied conver‐
sational agent (ECA) of Bohus and Horvitz [3], which uses
both visual and audio analysis to detect and track speakers
in multi-party conversations. Another application of sound
localization is to use the speaker’s location for automatic
camera steering, which is useful for teleconferencing and
surveillance purposes [6].

The advantages of sound localization have inspired many
robotics researchers to incorporate such an ability in robots
so that they can better sense what is happening in their
surroundings. For a robot, the direction of a sound can be
a rich source of information that can help enhance its
interaction with humans, for instance by letting users know
that the robot is listening and waiting for orders, or simply
showing the speakers that the robot is engaged in the
conversation. Moreover, the direction of a human sound
source can be further exploited by other modules in the
robot, such as navigation, speech recognition and vision.

For example, an audio-visual speaker tracker was used to
direct the attention of the robot SIG in multi-party interac‐
tions [19]. Similarly, Trifa et al. [34] have presented a system
that integrates sound source localization with other
functionalities for moving the robot’s eyes and neck
towards interesting events. Teachasrisaksakul et al. [31]
developed an indoor robot navigation system based on
sound localization. Recently, Li et al. [11] demonstrated a
robot that can play the game hide and seek, in which it moves
according to simple voice commands given by the players
and localizes the player raising his/her hand after receiving
the command “localization”. Here, to localize the player,
the robot makes use of sound localization and hand
detection. More frequently, however, robot implementa‐
tions of sound source localization have focused on enhanc‐
ing speech recognition [39], separating multiple sound
sources [36] or helping track objects [16] and persons [13].

Unfortunately, to the best of our knowledge, very little
effort has been devoted to exploring how to integrate sound
source localization systems in the overall scheme of HRI.
This is surprising, as several of these systems have been
integrated into several robots, as described above. One
possibility for this is that on a service robot it is challenging
to estimate the directions of multiple sound sources, and
an unpredictable system may provoke user backlash,
ruining the interaction. This is described in more detail in
the following section.

2.2 Challenges in estimating multiple DOAs in a mobile robotic
platform

As mentioned earlier, multi-DOA estimation is an essential
part of sound source localization, which is a well-studied
topic in signal processing. It has proven useful in applica‐
tions ranging from fault monitoring in aircraft [30], to
intricate robotic pets [10], to close-to-life insect emulation
[9]. In addition, the principles employed in DOA estimation
have been applied in the design of hearing aids [12].
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A popular methodology for DOA estimation in robotic
platforms is to use a microphone array with - usually - two
microphones, as proposed in [17]. Adding more micro‐
phones generalizes the strategy, as a two-microphone array
is an instantiation of classic reverse beamforming techni‐
ques [30], which create a noise map of the environment and
then, by using metrics such as energy levels, propose
possible sources of sound and their respective DOAs.
However, to obtain a high resolution noise map, and thus
a precise DOA estimation, beamforming techniques
require a large quantity of microphones, which is imprac‐
tical for mobile robotic platforms.

The topic of how many microphones to use in a service
robot is intrinsic to the nature of the application, as it is
important for the audio capture system to be mobile. A
many-microphone solution can provide good results, such
as the one proposed in [35] where the source signals were
separated from each other in order to enhance speech
recognition, and as a preamble for DOA estimation.
However, it required an array of eight microphones
positioned in a cube-like manner to work, doubling the
height of the robot without it. On the other hand, a few-
microphones solution, such as the two-microphone system
presented in [15], may be light enough to be carried by a
service robot, but might only work “adequately” (as stated
by the authors themselves), presenting solutions in the
limited -90°– 90° range.

A popular technique is the multiple signal classification
(MUSIC) algorithm [28], which is able to detect the DOA of
as many sources as one less the available microphones (e.g.,
one source with two microphones, two sources with three
microphones, etc.). It does this by projecting the received
signals in a DOA subspace based on their eigenvectors,
similar to principal component analysis. It was applied in
[14] with good results, although it has been observed that
its performance decreases considerably in the presence of
reverberation [38] (pp. 169).

Reverberation is one of the main challenges in the estima‐
tion of the DOA of a sound source, as it is prevalent in the
locations where a service robot is expected to be, such as a
restaurant. Moreover, it has been shown to hinder consid‐
erably the effectiveness of other current non-MUSIC-based
DOA estimators [8].

Another challenge is that simultaneous speech is to be
expected, as users may be speaking over each other.
Moreover, no assumption can be made as to the location of
the users relative to the robot, so their directions need to be
estimated in the complete -179°– 180° range. Furthermore,
because food/drink orders tend to be a few words-phrases,
the whole process needs to be fast enough to carry out DOA
estimations based on small-sized utterances of users.

As can be seen, carrying out multi-DOA estimation on a
mobile robotic platform provides a unique challenge, as a
balance needs to be struck. It needs to be light enough so as
not to hinder the mobility of the service robot, meaning that

the number of microphones needs to be maintained within
a practical range in order to be carried by a service robot.
At the same time, it needs to be able to handle a highly
dynamic acoustic setting; thus, it needs to be robust enough
on the software side to handle all of the aforementioned
issues.

As mentioned before, this may be the reason why, with all
the sound source localization systems implemented in
service robots, very few have been formally integrated into
an HRI scheme.

3. HRI-complementing strategies based on Multi-DOA
estimation

There are several functionalities that can be derived from
the information obtained via multi-DOA estimation. In this
section, we present those that we propose for integration
into an HRI scheme. As mentioned earlier, we are focusing
on the HRI aspect of order-taking, which is observed in
real-life scenarios. One of these scenarios, described in
more detail in Section 6, is that of a waiter, which adds
acoustic challenges while requiring the maintenance of
user satisfaction.

The following strategies are proposed to complement
order-taking in a HRI scheme.

3.1 Contextualized long-distance calls

The context of taking an order in an acoustically complex
scenario implicitly specifies the location of the robot in its
environment, as well as the possible places in which a user
can be located (in the case of a restaurant, users could be at
the bar, at other tables, etc.). If a user asks for the robot’s
attention, via the user’s DOA, it is possible to make a viable
estimation of the user’s location. This provides for the
possibility of knowing where to navigate next.

From the user’s point of view, he/she is able to call the robot
while navigating, even if the robot is not facing in the user’s
direction - although the robot may not be able to under‐
stand the actual command, the robot will be able to know
where to go to retrieve it better. This presents a very natural
way to communicate with the robot, similar to the way in
which one might want to obtain the attention of a person
from afar.

3.2 Facing the user

Having a robot rotate towards the user while speaking -
and from the user’s point of view - it appears as though the
robot is facing him/her. This will provide the impression
that the robot is ‘paying attention’ to the user when he/she
is speaking to it, and may enhance the naturalness of the
interaction. In the case of robots using directional micro‐
phones, this strategy will also provide the subtle cue that
the robot will better understand a person who is in front of
its microphone, and it may subtly indicate to the user how
to better work with the robot.
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3.3 Detecting multiple users

Current automatic speech recognizers are designed to
recognize one speech command at a time. However, during
a conversation between several users there can be situa‐
tions when two or more speak at the same time. It is very
useful, then, for a robot to be aware of these situations, since
it will be an indicator that the speech recognizer will not
perform well.

To integrate such behaviour in our robot, the following
logic was utilized: For every speech command being
recognized, the robot also checks for the number of DOAs
detected during the utterance of the speech command. If
only one DOA is detected, and an order is recognized, the
robot can proceed with the following steps of the task. If
there was more than one DOA detected, the robot should
notify the users of the situation, and again carry out the
order-taking process, though now coordinating with the
users. This coordination can be carried out by, first, asking
the users to speak one at a time, and then, going down the
list of detected DOAs and, for each DOA in the list, facing
that DOA and asking for an order in that direction.

4. Technical aspects of multi-DOA estimation on Golem
II+

Golem-II+ is a service robot, presented in Figure 1, built
with a primary focus of HRI. It is integrated by a cognitive
architecture focused on HRI, termed an ’interaction-
oriented cognitive architecture’ (IOCA) [21], which can
take advantage of different types of information interpret‐
ed from the environment, including the direction of the
user. Because Golem-II+ is a conversational robot, it is of
interest that it is able to detect and carry out conversations
with several users at any point.

Figure 1. The Golem-II+ Service Robot

IOCA has a top level, called the ‘Representation & Infer‐
ence’ phase, where the set of expected multi-modal
situations are defined and ordered in what is called
a ’dialogue model’ (DM), which guides the HRI process and
assumes an abstract-but-meaningful interpretation of the
world. This interpretation is achieved by first obtaining an
internal codification of the input [22] (i.e., the recognition
phase), and then providing a meaning to that representa‐
tion (i.e., the interpretation phase), guided by the contents
of its memory and the current expectations of the DM. With
this architecture, complex objectives can be fulfilled, such
as a tour-guide robot capable of guiding a poster session [1].

A DM represents the protocol of an interaction. It can be
seen as a graph composed of nodes (or situations) connected
by arcs, which in turn are composed by pairs of expecta‐
tions (α) and actions (β). Figure 2 illustrates the main
elements of a DM.

     
  : 

S Si j

Figure 2. Graphical representation of a simple DM

An Expectation is met when the abstract interpretation of
the world matches the expected occurrence in the world,
such as the user greeting the robot at the start of a tour. If
an expectation is met accordingly, the DM moves along the
HRI process; if something happens in the world, but no
expectations were in place for it in the current situation in
the DM, the system executes a recovery DM to continue the
HRI.

The multi-DOA estimation module resides inside the
recognition phase, where every sound received is tagged
with the characteristic of “direction”. This characteristic is
used by the interpretation phase to enrich the meaning of
the information received by other modalities. A good
example of this is when a user makes a food/drink order,
which is being recognized by the ASR, and the DOA
estimator complements this information by adding the
direction in which the order was obtained.

The technique implemented in the innards of the multi-
DOA estimation module is the lightweight multi-DOA
estimator (LMDE) [27]. It was chosen because it provides a
robust solution to the challenges described in Section 2.2,
with a relatively lightweight hardware setup. In addition,
there are aspects of this implementation that are taken
advantage of in the HRI integration, which is particularly
relevant to the case study. Thus, these technical aspects, as
well as a complementary evaluation of their appropriate‐
ness to be applied in the explored case study, are described
in detail in the following section. However, it is important
to emphasize that the technique used may very well be any
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other that is able to satisfy the requirements imposed by
IOCA, as well as those discussed in Section 2.2.

4.1 Lightweight multi-DOA estimator

The LMDE [27] uses a triangular microphone array and is
based on the parallel calculation of three inter-aural time
differences (ITDs) for redundancy, which feeds a cluster‐
ing-based DOA tracker. It comprises three modules:

1. Audio Acquisition. This obtains audio data from the
microphones and provides it to the initial DOA
estimation module.

2. Initial DOA Estimation. This estimates, from the audio
data, an initial, fast but reliable DOA estimation of a
single sound source in the environment.

3. Multi-DOA Tracking. This carries out dynamic cluster‐
ing of the incoming DOA estimations, by which the
DOAs of sound sources are proposed.

4.1.1 Audio acquisition

The audio acquisition in the LMDE requires that the audio
from the three microphones be acquired simultaneously, in
real-time. For this purpose, the JACK Audio Connection
Toolkit [7] was employed for audio capture. It can sample
at rates of 44.1 kHz and 48 kHz, providing a good resolution
for ITD calculations without slowing down other robotic
software modules.

4.1.2 Initial DOA estimation

The initial DOA estimation is carried out by the technique
described in [26]. It avoids the problems that arise when
estimating a DOA using 1D microphones arrays, and
maintains a relatively light hardware setup: an equilateral-
triangular array, positioned over the horizontal top panel
of the robot, as shown in Figure 3 (which has a top view of
the microphone array). To this effect, the system obtains a
set of three simultaneous sample windows.

Left Right

Front
Speaker

Figure 3. Hardware setup of the employed system

The audio data is passed through various serialized sub-
modules: a band-pass filter, a voice activity detection
(VAD) stage, multi-ITD estimation, a redundancy check
and, finally, a final DOA estimation. The flow of data is
summarized in Figure 4.

Figure 4. Initial DOA estimation flow of data

A general infinite impulse response band-pass filter is used
at the beginning of the process to remove general ambient
noise that is outside the human speech frequency bands.
The filter model was created such that only frequencies
between 1 and 4 kHz were let through. This reduces the
sensitivity to unwanted noises that should always be
ignored, such as high-pitch sounds, microphone hiss, etc.
Concurrently, it did not degrade the sensitivity of the
system in relation to human speech.

Next, VAD is carried out to trigger when to start and and
when to stop DOA estimation. The VAD system adjusts the
baseline of the environmental noise to any sound that is
emitted with a pre-specified delay. In this way, the VAD
system is able to work properly when the robot changes
acoustic environments or when an unwanted noise
becomes too loud.

When the VAD system is triggered, three possible ITDs are
calculated using cross-correlation between sample win‐
dows R and L (IRL), L and F (ILF), and F and R (IFR). An initial
local DOA (Dxy

m) is calculated from each ITD (Ixy) using
Equation (1):

Dxy
m =arcsin( I xy ∙V sound

F sample ∙ d ) (1)

where Vsound is the speed of sound (in m/s), Fsample is the
sampling rate (in Hz), and d is the distance between
microphones (in m).

Next, a pair of global DOAs (Dxy
0  and Dxy

1 ) are calculated,
using Equations (2) (3) (4). While the local DOA Dxy

m

provides an angle from the perspective of the microphone
pair alone, the global DOAs provide an angle from the
perspective of the whole array. Specifically, Dxy

0  is the global
DOA calculated as if Dxy

m was coming from the front of the
xy microphone pair, and Dxy

1  is as if it was coming from the
back:

0

0
1
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5Caleb Rascon, Ivan Meza, Gibran Fuentes, Lisset Salinas and Luis A. Pineda:
Integration of the Multi-DOA Estimation Functionality to Human-Robot Interaction



0

1

240 , (120 ) > 180
=

120 ,

= 60

m m
LF LF

LF m
LF

m
LF LF

D if D
D

D otherwise

D D

ì - -ï
í

-ïî

-

(3)

0

1

240 , ( 120 ) > 180
=

120 ,

= 60

m m
FR FR

FR m
FR

m
FR FR

D if D
D

D otherwise

D D

ì + - -ï
í
- -ïî

+

(4)

These three global DOA pairs are used to check if the three
ITDs are from a sound source located in the same angle
sector. To do this, the average of the differences between
the DOA pairs (Cpqr) is calculated using Equation (5):

| | | | | |=
3

p q q r r p
RL LF LF FR FR RL

pqr
D D D D D DC - + - + - (5)

where p, q and r, can be either 0 or 1. This provides eight
possible Cpqr, the lowest of which is considered to be the
incoherence of the sample window set. The global DOA set
that is represented in the minimum Cpqr, meaning
DRL

p ,  DLF
q ,  DFR

r , is proposed as the DOA set for this
window sample set.

Figure 5 shows two examples of two different datasets.
Figure 5a shows a highly incoherent set, and it can be seen
that no DRL

p ,  DLF
q ,  DFR

r  combination “points” to a clear
direction. On the other hand, Figure 5b shows a dataset
configuration with very low incoherence, which is
DRL

0 ,  DLF
1 ,  DFR

0 , with the combination p=0, q=1, r=0 which
points in the direction of the speaker.

L R

F

Speaker

L R

F

Speaker

L

D1
LF

D0
LF

D1
FR

D0
FR

D0
RL

D1
RL

L

D1
LF

D0
LF

D1
FR

D0
FR

D0
RL

D1
RL

(a)

(b)
Figure 5. Example of window sets with (a) high incoherence and (b) low
incoherence

A pre-specified incoherence threshold (measured in degrees
of separation between the DOAs) is used to reject sample
window sets. A high incoherence implies that the sample
window set either has too much reverberation to be
trustworthy for further processing, or that it contains more
than one sound source. This rejection step serves as a type
of redundancy check per sampling window set.

If the sample window set is considered coherent, its final
DOA value (θ) is chosen from one member of its DOA set
DRL

p ,  DLF
q ,  DFR

r . The one that is chosen is the one that the
ITD from which it was calculated has the lowest absolute
value of the three (IRL, ILF, IFR).

This final decision ensures that θ is based upon the
microphone pair that is most perpendicular to the source
and, because of the equilateral nature of the triangular
array, this implies that it is always estimated using a local
DOA Dxy

m with a value inside the -30°– 30° range (well
within a close-to-linear area of Equation (1)). This means
that all through the -179°– 180° range, there is always a
close-to-linear ITD-DOA relation.

4.1.3 Multi-DOA tracking

The DOA estimator described in the previous section only
provides results when there is considerable confidence in
only one sound source being detected in a small sample
window (up to 100 ms). It has been seen that, even in
simultaneous-speech, users are not expected to talk with
100% overlap over each other. In fact, when analysing
speech recognition, ‘spurts’ of non-overlapping speech
have been considered to the order of 500 ms [29]. For
example, in Figure 6, it can be seen how two randomly
chosen tracks from the DIMEX corpus [24], when overlap‐
ping one another, still have some portions with no overlap
between them.

Figure 6. Non-overlapping simultaneous speech

This means that the initial DOA estimator is able to provide
reliable results of single sources even in multi-user scenar‐
ios. However, because of the stochastic nature of the
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presence of single-user sample windows in the simultane‐
ous audio time line, such results would be provided in a
sporadic fashion. To this end, a simple tracking system is
employed that dynamically clusters similar DOAs into
candidate sound sources.

The tracker maintains in its memory the last DOAs provid‐
ed by the initial DOA estimator in a specific time frame.
When a new DOA is estimated, the tracker carries out the
following:

1. If the new DOA is not ‘close enough’ to the average
DOA of any current cluster, or there are no clusters in
the environment, create a new cluster with the new
DOA.

2. If it is close enough to a current cluster, add the new
DOA to it and re-calculate its new average DOA.

If a DOA is deemed to be too old, it is ‘forgotten’ by
removing it from its cluster and re-calculating its average
DOA.

Every cluster is considered a candidate sound source until it
has more than a pre-specified number of DOAs attributed
to it. At this time, it becomes a ‘sound source’ and its
average DOA becomes its main estimated DOA.

4.2 Complementary multi-DOA estimation evaluation

In Section 5, a case study is investigated that takes place
in a typical indoor-social acoustic environment (medium
reverberation,  fan-noise,  some chatter,  etc.),  with  up to
three users talking at the same time. It  is  of interest  to
know how adequate LMDE is in its application in such a
case  study.  To  this  effect,  a  complementary  evaluation
was carried out that involved three tests, carried in a very
similar setting and with the same acoustic environment
to  the  one  used  in  the  case  study:  an  indoor-social
environment.  The  evaluation  used  one-to-three  studio-
grade  monitor  speakers  simultaneously  reproducing
random recordings from the DIMEx100 Corpus [25] for
10  seconds,  each  monitor  speaker  acting  as  a  sound
source. For each number of sources, 10 tests were carried
out. Figure 7 presents a representative output of the tests
carried out with one, two and three simultaneous sources,
respectively.

In Table 1, the results are shown in terms of precision, recall
and F1 metrics, where an estimation was considered to be
a true positive if the DOA of a source was reported and
correctly estimated (with an error below ±10°) over a
considerable amount of time (more than five seconds)
during the 10-second lapse of each test. If a source that was
present during the test was not reported over a considera‐
ble amount of time, it was considered to be a false negative.
If a source that was not present during the test was reported
over a considerable amount of time, it was considered to be
a false positive.

(a) Multi-DOA output with 1 source (0◦).

(b) Multi-DOA output with 2 sources (-30◦ , 90◦).

(c) Multi-DOA output with 3 sources (-30◦ , 90◦ ,
-150◦).

Figure 7. Tests with varying numbers of sources

Sources Precision Recall F1

1 62.50 100 76.92

2 84.62 55.00 66.67

3 90.91 33.33 48.78

Average 79.34 62.78 64.12

Table 1. Results of an overall evaluation of the multi-DOA system

In Table 2, the results are shown again in terms of precision,
recall and F1 metrics, but by observing the outputs far more
strictly in a window-by-window manner, and by consider‐
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ing the correct estimation of the number of sources and
their DOA (as well as the report of true positives, false
positives and false negatives) for each sample window of
the collected data.

Sources Precision Recall F1

1 51.41 85.16 64.11

2 41.56 32.13 36.24

3 46.60 18.69 26.67

Average 46.52 45.33 42.34

Table 2. Results of a window-by-window evaluation of the multi-DOA
system

These results show that there is definitely room for im‐
provement for the LMDE while also showing its adequacy
for use in the case study. In the overall evaluation, on
average, the LMDE performed over 60%, which is very
good considering the acoustic complexity of the setting.
The window-by-window evaluation did not present as
good results, although an average performance within the
42% range with such strict observation can be considered
adequate. It is important to note that the objective of this
evaluation was to see whether the LMDE is adequate to be
employed in the case study, which it has shown that it is.
A thorough evaluation of the LMDE in several acoustic
scenarios and its improvement are outside the scope of this
paper, but it is definitely a cause for future work.

5. Case study: Golem-II+ as a waiter

Golem-II+, carrying out the tasks of a waiter, was investi‐
gated as a case study to observe how the strategies descri‐
bed in Section 3 are carried out in a live setting, interacting
with humans.

Such a task provides a good baseline to evaluate the service
robot as a whole and the effect of the multi-DOA estimation
specifically, as there are many elements involved that not
only need to work well but need to work well together.
Examples of these elements include navigation in a
dynamic environment, face and gesture identification,
object manipulation, speech recognition, all of which are of
interest in the service robotics community. Additionally,
this task involves the three behaviours we are interested in:
a waiter can be called from a distance to a table; while
taking orders, a waiter should face the user in turn to
acknowledge him/her; and, if more than one user speaks at
the same time, a waiter should direct how the ordering
takes place.

The general concept of this task is that the users are
customers in a restaurant who want the robot, acting as the
waiter, to bring them drinks/food. There are several tables
in the restaurant among which several users are seated. The
location of the tables are known a priori to the robot1. When

the robot is not doing anything, it is positioned in a place
that is visually accessible to the users near the tables.

The users are able to call upon the robot, at any time, via
voice. When a user does so, Golem-II+ uses its multi-DOA
estimation module and the pre-known table locations to
estimate from which table the call came from, and navigates
towards it. Once it is at the table, it will ask for an order,
following the logic of the detecting multiple users strategy: if
more than one user talks at the same time, it will ask them
to talk one at the time, and coordinate the order. During the
coordination, Golem-II+ will face the user who is speaking.

Once Golem-II+ has the order of all the users at that table,
it will go to the restaurant’s bar and ask for them in pairs,
if necessary (since the robot only carries one object at a time
in each of its arms). At this stage, it can look for them over
the bar using its vision system or ask directly for them.

As mentioned earlier, throughout the task, users at other
tables which are not being attended can call for the atten‐
tion of the robot. If the robot is busy, it will acknowledge
the calling users by facing them and asking them to wait.
For every call, Golem-II+ stores where the call came from
so that it can later visit it.

5.1 Dialogue model

We modelled the task on the SitLog robotic language [23].
For this, we split the task into five main subtask models:
wait for call, walk and listen, ask orders, deliver order and
arms. In wait for call, Golem-II+ introduces itself and tells the
user that it is ready to serve the table; in walk and listen, the
robot navigates while paying attention to calls from the rest
of the tables; in ask order, Golem-II+ takes orders while
facing users or checking that only one speaks at a time; in
deliver orders, the robot navigates to the ‘bar’ to retrieve the
objects that the users asked for and delivers them appro‐
priately; finally, in arms, Golem-II+ keeps track of what it
has in each hand.

We follow an ISU approach to administer the next main
action of the robot [33]. It employs two main variables: a
list of tables from which users have called it and which need
to be attended, and a list of orders taken per table that have
not been delivered. Depending upon the state of these
variables, it can choose its next action. Given the flexibility
of the SitLog programming language, it is trivial to switch
between two priorities: take orders first or deliver orders
first.

To incorporate the multi-DOA estimation module into the
DMs, we created a new type of expectation, dirs(As), which
consists of a list of recently estimated DOAs.

Figure 8 shows part of the walk and listen sub-DM. While
the robot is moving towards its destination D (triggered by
the action goTo(D)), there are two possible situations that
can interrupt its navigation: 1) that it has arrived at its

1 Waiters are expected to know this information, so this is consistent to the real-life scenario.
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destination (expectation arrived), in which case the sub-
dialogue ends, and 2) that the multi-DOA estimation
module has detected a DOA (expectation dirs(As)) that is
consistent with the direction of a table2, in which case it
turns towards the table, says “I will be there”, registers the
table for future reference, and resumes its navigation
towards D. In the latter case, if the expectation dirs(As) has
more than one consistent DOA, it turns towards each of
them and registers them all.

  :goTo(D) 
Ini Wa

  arrived:  

 noArrived:  

 angle([]):  
 dirs(As): lter@As

 :turn(T),say("I'll be there"),push(T,Tables) 

D G(T)

Fin

Figure 8. Dialogue model for the walking and listening sub-task

Figure 9 shows a part of the ask order sub-DM, which also
relies on the multi-DOA estimation module. This model

describes how Golem-II+ asks for an order, listens for an
answer, and verifies that only one person talked. A DOA
list is given to this model as an argument (Ps), from which
its first item is removed, stored in A (action pull (Ps, A)), and
is the direction in which the robot’s neck turns to (action
turn(A)); if Ps is empty, the robot continues in its default
state (turned to front). Next, it asks the user for an order
(action ask_order), which is followed by the act of listening
for the order (expectation order(X)). Once the order has been
provided, the robot consults the multi-DOA estimation
module if any DOAs were detected during the act of
listening (expectation dirs(As)), filtering them for consis‐
tency3. Depending upon the number of consistent DOAs
detected, one of the following situations may be triggered:
a) if no consistent DOAs were detected (situation A([])), it
accepts the order and asks whether the user wants some‐
thing else, but it does not face the user; b) if only one
consistent DOA was detected (situation A([A])), it accepts
the order, faces the user and asks the user whether he/she
wants something else; or c) if more than one consistent
DOA was detected (situation G(As)), it rejects the order,
adds the DOAs to Ps (action push([A,B,...], Ps)), tells the
users to speak one at a time, and returns to the initial
situation to retake the order while providing Ps as an
argument, which results in the robot facing each consistent
DOA and taking an order for each one.

Figure 9. Dialogue model for the ask order sub-task

It is important to mention that the multi-DOA estimation
technique used by the LMDE module can estimate DOAs
with two different granularities: one provided by the initial
detection phase, and the other by the tracking phase. Each
type is used in different situations for the task.

For instance, when being called from a table (expectation
dir(As) in the walk and listen mode), the estimated DOA
value is only used as part of the consistency filter, and is
not used directly to turn the robot towards the table. In this

case, the DOAs provided by initial detection are more
appropriate since they are obtained with less information
but are more prone to errors.

In the case of order-taking (expectation dir(As) in the ask
order mode), the estimated DOA value is used directly to
face each user. In this case, the DOAs estimated in the
tracking phase are more appropriate since these are
considerably less error-prone (though they require more
information to be provided).

2 Inconsistent DOAs that are not pointing to the position of a table are filtered-out by the function filter@As.
3 Inconsistent DOAs that do not point to possible positions of users sitting at the current table are filtered out by the function filter@As.
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The two described sub-DMs are the core of the integration
of the multi-DOA estimation module in our HRI scheme.
A video with a demonstration of the task is available
online4.

6. Evaluation

To evaluate these strategies and how well-received they are
by users, two forms of evaluations were carried out, and
are detailed as follows. One is by an evaluation carried out
by volunteers that participated as customers in the waiter
scenario. The second is via presenting this scenario with
expert users as a demonstration in the RoboCup@Home
2013 international Service Robotics competition.

6.1 Evaluation via volunteers as customers

In Figure 10, a description of the evaluation scenario is
presented. As can be seen, three users were positioned in
two tables, two of them shared a table and one was by
himself/herself. There was also a bar, from which drinks
could be picked up.

Figure 10. Waiter Scenario

We ran the task and let the users compete for the attention
of the robot. Since order-taking was the main focal point of
evaluation, we made the robot prioritize taking orders
(instead of delivering them), and we did not allow the
delivery of the orders. We instructed the users to try to get
their order as quickly as possible and measured the success
of the interaction for each of them in terms of being able to
make their order.

In order to obtain a good indicator of the performance of
our system, we let users interact with the robot only once:
there were only vague descriptions of how the interaction
would play out, as the users were only told that the role of
Golem-II+ was that of a waiter and that it would only use
its ears to locate them. The intent behind this was to let the
users figure out how to interact with the robot as soon as
the interaction began. We only gave the robot one chance
to take an order from a user. When the robot started to
deliver the order, the interaction was stopped. If a user was

not able to get an order in, it was considered to be an
unsuccessful interaction for that user.

Table 3 summarizes some of the characteristics of this
evaluation. There were 30 volunteers who participated in
10 interactions, normally lasting 10 minutes. On average,
the volunteers were 21 years old, the youngest being 19 and
the oldest 28 years old. The possible orders that the users
could give consisted of two Mexican traditional drinks. 60%
of the users did not have any previous experience of
interacting with a robot, and none of them had previous
experience with this task.

Our evaluation was carried out in Spanish, since it is the
native language of the users. However, we have an
alternate version in English.

Interactions 10

Users 30

Language Spanish

Gender Females: 16.7%, Males: 83.3%

Average age 23

Experience Golem: 36.7%, other robot: 3.3%

none: 60.0%

Table 3. Summary of characteristics of the interactions of the evaluation

After each interaction, we collected information about the
satisfaction of the users by means of a questionnaire based
on the Paradise framework [37]. In order to account for the
interaction through DOAs, we added the Did the robot hear
you? question to that framework, as well as a yes/no
question: Did you like the rhythm?. The resulting question‐
naire consisted of eight questions with a Likert scale of 4
options, from positive to negative. Table 4 summarizes the
eight measured aspects within the framework. In addition
to the questionnaire, we also collected performance
information by means of the system logs and our own
notes.

The results are normalized with the weights 1, 0.66, 0.33
and 0, from the most positive to the least positive.

Voice intelligibility 81.1%

Understanding by ASR 57.8%

Multi-DOA Performance 58.9%

Figuring out interaction 72.2%

Speed 55.6%

Expectations 70.0%

Future use 64.4%

Stress 80.0%

Table 4. Summary of the results of the opinions of users interacting with
Golem-II+ as a waiter

4 http://golem.iimas.unam.mx/waiter
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As can be seen in Table 4, the opinions of the users about
the robot are, in general, positive. The expectation and
stress level were regarded very positively by the users.
Moreover, considering that the evaluation setting was a
very strict one, the fact that the future use aspect is above
50% can be considered to be good. These three aspects are
of great importance from the HRI standpoint, as it implies
that the users were comfortable during the interaction, that
the robot reacted in ways that they expected, and that the
users were open to using it again in the future.

From Table 5, we can gather that the multi-DOA estimation
module was used by the users in all of the interactions. In
addition, the robot was almost always able to return
feedback to the users calling it. Another interesting point is
that the detection of multiple users speaking at the same
time was used in 40% of the interactions. Considering that
the situation did not account for people talking over each
other, this equates to a significant amount of use, heavily
implying that multiple source detection is of significant
importance in an order-taking interaction.

Multi-DOA activated 100.0%

Calling 100.0%

Robot reacted 96.7%

Spoken at the same time 40.0%

Ordered 60.0%

Not ordered 40.0%

Interactions with one order 90.0%

Interactions with two orders 50.0%

Interactions with three orders 40.0%

Table 5. Summary of the events during the interactions

However, user opinion is not as positive about the robot’s
comprehension skills for both the speech recognizer and
the multi-DOA estimation module. We believe that this is
partly because 40% of the users were not able to order.
However, in 40% on the interactions, all the users were able
to order. In addition, in 90% of the interactions, there was
at least one ordering, and only in 1 interaction was nothing
ordered.

6.1.1 Discussion on interaction success vs. perception of being
listened to

An additional result is the relationship that was found
between the success of the interaction and the users’
perceptions of being listened to. As described before, the
success of an interaction is measured per-user, depending
upon whether he/she was able to provide an order to the
robot. In Figure 11, these aspects are plotted against each
other.
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Figure 11. Percentage of successful and unsuccessful interactions vs. the
perception of the user being listened to

As can be seen in Figure 11, there is a vague overall
tendency of successful interactions between the robot and
users who perceived the robot to be a good listener, as well
as a tendency of unsuccessful interactions between the
robot and users who perceived the opposite. This tendency
is somewhat representative, as nearly half of the users
(40%) were able to successfully provide an order, while the
other near-half (60%) were not.

However, it is important to note that, first, this result was
observed from data that was not aiming for its evaluation;
second, no statistical significance was found in this result;
and third, this tendency is not consistent throughout all the
data (the information provided in the bin called “All the
time” in Figure 11 breaks this tendency). All of these factors
imply that this result should by no means be considered
definitive, and it definitely calls for more subsequent
studies. Still, the fact that it appeared provides encourage‐
ment in that robust sound source localization functionality
may in some way influence the success of a HRI.

6.2 Evaluation via demonstrations in the service robotics
competition

The alternate English version of the waiter case study was
presented as a demonstration in the @Home league of the
RoboCup 2013 international competition, which took place
in Eindhoven, The Netherlands. It was carried out as part
of the Open Challenge test, which requires the robot to
demonstrate an application in relation to an open-ended
topic. It is evaluated in terms of demonstration success and
fluidity of interaction by a panel of judges composed of
representatives of all the participating teams. Golem-II+
was given the top score among all the teams.

In addition, the Technical Committee and the Executive
Committee of the competition gave Golem-II+ the 2013
Innovation Award for this demonstration. This award is
provided only to robots that present novel concepts that are
carried out successfully in conditions of competition.

11Caleb Rascon, Ivan Meza, Gibran Fuentes, Lisset Salinas and Luis A. Pineda:
Integration of the Multi-DOA Estimation Functionality to Human-Robot Interaction



7. Discussion on evaluations results

All the evaluations - taken together - show that the strat‐
egies proposed to integrate a multi-DOA estimation
module in a HRI scheme were generally well-received by
both novice and expert users, and that they are in constant
use during the interaction.

The volunteers-as-customers evaluation in itself also
showed that the concept of a DOA is quickly and appro‐
priately adopted by novice users as part of their interaction
with the robot. The evaluation by demonstrations-in-
service-robotics-competition itself also showed that expert
users welcome these strategies for its success in complex
acoustic settings, and that they see the potential for use in
their already-established interaction protocols.

All of these results imply that the strategies are a good step
in the integration of a multi-DOA estimation module in a
HRI scheme, but also that there is definite work to carry out
to complete this integration in both HRI strategies as well
as in the technical aspects of multi-DOA estimation.

8. Conclusion

Multi-DOA estimation, although challenging when carried
out in a mobile robotic platform, provides acoustic infor‐
mation that can strongly complement HRI, specifically
order-taking. Three strategies involving multi-DOA
estimation were proposed:

1. Having specific areas where the user can be located in
the environment, a DOA value can be used to estimate
the location of the user when he/she speaks to the robot
from afar. The robot does not need to be facing the user
to make this estimation, and the user can call out and
interrupt the robot at any moment.

2. Facing the user who is speaking provides a natural
response from the robot, as though it is ‘paying
attention’ to the user, complementing the interaction.

3. Detecting various users speaking at the same time
provides the robot with the ability to not only ascertain
whether the acoustic environment is conducive for
good speech recognition, but also to coordinate with
users as to who goes first in providing a command.

As a case study, these strategies were observed and verified
by implementing them in our service robot, Golem-II+, as
part of the task of being a waiter in a restaurant. This task
was carried out by several non-experienced volunteers
and, in general, they reported that they were comfortable
with the robot’s behaviour, that the robot reacted in ways
that they expected, and that they would be open to using
the robot again in the future. As a confirmation of these
findings, the English version of this task received the
Innovation Award from the @Home league of the RoboCup
2013 competition.

As future work, it would be of interest to improve the multi-
DOA estimation system, as it is definitely called for,

according to both evaluations carried out (global and
window-by-window). Moreover, a vague tendency was
observed between the success of an interaction and the
user’s perception of being listened to, which calls for
further study. Furthermore, all three strategies were
evaluated as a “group”, since the case study asked for their
intertwined application; an individual evaluation of each
strategy would have been unreasonable, since one relied on
the other to carry out the task, and finding a proper
substitute for each strategy was beyond the scope of this
work. However, it would be possible, with another case
study, to investigate the impact of the proposed strategies
on their own.

In addition, we propose adding and investigating the
benefits of a fourth strategy: automatic user labelling. Instead
of embarking on a user identification process for every
order taken (such as asking for a name or searching for faces
in the visual range), the DOA estimated while listening for
an order could be used to automatically label the user. From
the user’s point of view, this would make the interaction
more efficient and closer to a natural interaction during the
provision an order.

Moreover, it is of interest to combine the multi-DOA
estimation module with visual information for redundancy
purposes, such as in the case where users switch places at
the table while the robot is retrieving their order.
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