
ARTICLE

International Journal of Advanced Robotic Systems

Concept and Functional Structure of a
Service Robot
Regular Paper

Luis A. Pineda1*, Arturo Rodríguez1, Gibran Fuentes1, Caleb Rascon1 and Ivan V. Meza1

1 National Autonomous University of Mexico, Mexico
* Corresponding author(s) E-mail: lpineda@unam.mx

Received 13 June 2014; Accepted 28 November 2014

DOI: 10.5772/60026

© 2015 The Author(s). Licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Abstract

In this paper, we present a concept of service robot and a
framework for its functional specification and implemen‐
tation. The present discussion is grounded in Newell’s
system levels hierarchy which suggests organizing robotics
research in three different layers, corresponding to Marr’s
computational, algorithmic and implementation levels, as
follows: (1) the service robot proper, which is the subject of
the present paper, (2) perception and action algorithms,
and (3) the systems programming level. The concept of a
service robot is articulated in practice through the intro‐
duction of a conceptual model for particular service robots;
this consists of the specification of a set of basic robotic
behaviours and a number of mechanisms for assembling
such behaviours during the execution of complex tasks.
The model involves an explicit representation of the task
structure, allowing for deliberative reasoning and task
management. The model also permits distinguishing
between a robot’s competence and performance, along the
lines of Chomsky’s corresponding distinction. We illustrate
how this model can be realized in practice with two
composition modes that we call static and dynamic; these
are illustrated with the Restaurant Test and the General
Purpose Service Robot Test of the RoboCup@Home competi‐
tion, respectively. The present framework and methodolo‐
gy has been implemented in the robot Golem-II+, which is
also described. The paper is concluded with an overall

reflection upon the present concept of a service robot and
its associated functional specifications, and the potential
impact of such a conceptual model in the study, develop‐
ment and application of service robots in general.

Keywords Concept of a service robot, Service robots
system levels, Conceptual model of service robots, Robot‐
ics’ task structure, Practical tasks, Structure of a general
purpose service robot, RoboCup@Home competition, The
Golem-II+ robot

1. Introduction

Current practice in service robot research should be placed
in the context of particular research groups: the back‐
ground and interests of the group and the group’s mem‐
bers, the group’s research network, the explicit agenda of
short-, medium- and long-term goals, the preferred tools
and methodologies, and the group’s practice and experi‐
ence. It is also necessary to consider whether the focus is
academic research and advancing the state of the art, or
whether it is to develop human resources and/or the
development of commercial applications. In addition, it is
also important to consider how the effort is directed and
how productivity is assessed. One has to see, for instance,
if the aim is producing robotics devices and algorithms or
else fully operational service robots, publishing journal and

1Int J Adv Robot Syst, 2015, 12:6 | doi: 10.5772/60026

conference papers, patents and utility designs or research
corpora. Academic productivity can also be assessed in
terms of the doctoral and masters dissertations produced
within the context of the group, and also through demos,
formal evaluations and competitions, such as Robo‐
Cup@Home1. These dimensions define a very large space
in which research efforts can be placed, and although the
stated purpose may be to develop ’service robots’, different
groups may be doing very different things.

In practice, most service robots research and development
groups are focused on particular specialities, like naviga‐
tion [1-5], manipulation [6-10], vision [11-15], robot
planning and coordination [16-22], audio [23-25], control
and signal processing [26, 27], operating systems [28, 29],
speech and language processing [30, 31], machine learning
[32-37], human-robot interaction [38-41] and artificial
intelligence [42], among others, that constitute the service
robot’s supporting or enabling technologies. A detailed
review and systematic comparison of the different ap‐
proaches in the specialities mentioned - and possibly others
- is a huge task to be undertaken that is beyond the scope
of this paper. However, what we would like to highlight at
this point is that groups are strong in those specific
disciplines, but they simply integrate other technologies
needed in the construction of the robot as a whole, and the
development of the robot itself is mostly a question of
"implementation". From this perspective, the robot "emerg‐
es" as a side effect of the various functionalities but it is not
the proper object of research, and somehow paradoxically
it merely provides a context for making progress in the
supporting technologies. The state of the field is hence not
coherent, makes communication and interaction between
groups difficult, fosters highly unbalanced development
and, although there may be a large number of contributions
to the supporting disciplines, current practice prevents the
clear development of the service robots as an objective in
itself.

The present state of the field is due, at least in part, to the
lack of a clear and explicit concept of a service robot that is
shared by the community and - consequently - of guidelines
on how to articulate such a concept in particular research
efforts. This paper is concerned with the analysis of such a
concept and its impact on the development of service robots
in general. In Section 2, we place the problem in the context
of system levels, and argue that there is a service robot level
corresponding to the knowledge level in Newell’s system
levels [43] as well as to the computational theory in Marr’s
system levels hierarchy [44]. We argue that a higher-level
specification of the function of a service robot provides
context and coherence to the enabling technologies,
producing a virtuous cycle that fosters progress in the field
of service robots, and also promotes advances in enabling
technologies directed specifically to service robots, and
hence progress in the discipline as a whole. We also
propose placing a ceiling on the tasks that can be performed

by machines with current technology and adopt the
practical task and domain-independent hypotheses for
service robots (as presented in [45]), after the correspond‐
ing hypotheses for dialogue systems [46], and pose that the
conceptual model for a service robot needs refer to such a
notion and hypotheses.

In Section 3, we discuss how the concept of a service robot
can be articulated in practice through the explicit definition
of a specific conceptual model for particular service robots.
This consists of a highly abstract specification of what the
robot does from the point of view of human users in terms
of a set of behaviours at the level of the task and a behav‐
iours composition mechanism. The conceptual model also
permits the introduction of an explicit notion of a task
structure. We also discuss two kinds of composition
mechanisms that we call static and dynamic. The former is
appropriate for situations in which the task structure can
be known in advance through analysis. Instances of this
kind of task are the standard scripted tests of the Robo‐
Cup@Home competition. The dynamic composition
mechanism, which is used when the robot has to interpret
and perform arbitrary commands and the structure of the
task is not available a priori, is discussed in Section 4.

The abstract specification with an instantiation of the
conceptual model is illustrated in Section 5. For this, we use
the notion of a dialogue model for the specification of
behaviours, the SitLog programming language for the
specification and interpretation of the task structure [45]
and the IOCA architecture [47]. The static and dynamic
composition modes are exemplified with the Restaurant
Test and Endurance General Purpose Service Robot Test
(otherwise known as the EGPSR Test) of RoboCup@Home.
The conceptual model and these applications have been
implemented in the robot Golem-II+, which is described in
Section 6.

The main contribution of the present paper is in the
articulation of a conceptual model for a service robot in
which the specification of generic tasks is stated at a
functional level that is oriented to the human user. This
level consists of the specification of the robot’s competence
and is distinguished from the algorithmic and implemen‐
tation levels that are commonly the focus of robotics
research and which determine the robot’s performance.
The paper is concluded in Section 7, with an overall
reflection on the framework and methodology for the
development of service robots in diverse application
domains and the impact of the conceptual model in the field
as a whole.

2. Concept of a service robot

Service robots are the product of implementation efforts
and ’emerge’ from the integration of diverse technologies,
which are in turn supported by system software and

1 http://www.robocup.org/

2 Int J Adv Robot Syst, 2015, 12:6 | doi: 10.5772/60026

utilities of different sorts. Questions about the design and
implementation of perception and action algorithms can be
stated explicitly in terms of specific functionalities and
constraints, and the resulting devices can be assessed in
relation to such specifications. However, the question of
what is that we do when we design and build a service
robot is somehow more difficult to answer. To grasp this
point, we draw an analogy between service robots research
and the design and construction of auto-mobiles of the
standard sort. The car comes from the integration of a
number of enabling structures and systems, mainly the
body shell, the engine, the transmission system, the
suspension system, the steering system, the breaks and the
electrical equipment. Each of these technologies is the
product of a research and development field with its own
questions, practices and traditions; however, the car as a
unit has a functional definition which consists of transport‐
ing people with some range of specific needs (e.g., sport
cars, family cars, etc.), and this specification determines
and regulates the specification for the particular structure
and systems enabling such functionality. Hence, the
evolution of auto-mobile technology can be seen as the
product of a virtuous cycle between the function and the
enabling technologies.

The relation between the design object and the enabling
technologies can be thought of in terms of the notion of
system levels. This notion is familiar to the philosophy of
science, in which more specific sciences ’reduce’ to more
general ones, like chemistry which reduces to physics. Each
discipline has its own focused phenomena, which are
described by a set of general laws and a specialized
vocabulary of theoretical terms, but at a particular level of
abstraction that is relevant to the phenomena of interest.
The reduction proper involves a mapping from the laws
and theoretical terms between the corresponding theories.
These notions have been applied to computing systems by
Newell [43]. Newell’s paper was motivated by the lack of
a clear or common understanding of what knowledge was
at the time, and yet there was a very significant effort
devoted to the construction of knowledge-based systems,
very much like the current situation in service robots
research.

System levels in Newell’s sense involve independent layers
with a well-defined input, output and transfer function,
which can be thought of as systems in themselves or else
can be used in the construction of higher levels. Newell’s
levels for computational systems are the physical level, the
device level, the electronic circuit level, the logic circuit
level, the transfer-register level (i.e., computer architec‐
ture), the symbol level (i.e., programming languages) and,
on top of this hierarchy, the knowledge level. An important
distinction introduced by Newell was that all levels but the
knowledge level reduce to the next down in the hierarchy,
in the sense that a computer program written in a pro‐
gramming language can be mapped down into the com‐
puter architecture, or a logical circuit can be mapped

directly into its implementation in an electronic circuit. The
knowledge level, for its part, cannot be reduced. For this,
the knowledge level is not only at the top of the systems
level hierarchy but it also has a particular quality that
makes it altogether different from all the other system
levels. Function is stated at the knowledge level and it
stands apart from all supporting or enabling technologies;
for this reason, we think of the car as something that
emerges from its constituent parts but which cannot be
reduced to them. We can pose the same distinction for the
service robot and think of a functional specification of what
the robot does from the point of view of people, and this
specification can be distinguished from the robot’s mecha‐
nisms and systems.

An alternative to Newell’s system levels, although some‐
how from a different perspective, was introduced by Marr
[44], who distinguished between three different levels that
he called the computational theory level, the representation and
algorithmic level and the implementation level; the first
corresponds to the system’s functional specification and
addresses the what questions in a very general and abstract
way; the second addresses the how questions involving
symbolic representations and specific algorithms, and the
third (lower) level addresses questions related to the details
of the computer’s architecture and hardware devices. We
propose that in the present context the first corresponds to
the service robot functional level, the second to the enabling
technologies level, and the third to the middleware (e.g.,
operating systems and communications, software agents,
hardware drivers, etc.), which is the level that is addressed
by system programming. The correspondence between
Newell’s and Marr’s levels and the present proposal is
illustrated in Table 1.

Newell’s Levels Marr’s Levels Proposed Levels

Emerge Knowledge Computational
Theory

Functional
Specification

Reduce Symbol Representation
and Algorithmic

Robotic
Algorithms

Implementation System
Programming

Table 1. Correspondence between Newell’s, Marr’s and Service Robot’s
System Levels

Newell’s, Marr’s and the present notion of system levels
should be distinguished from actual computer architec‐
tures, like subsumption architectures [47], cognitive
architectures [48] or layered architectures [18], as these are
mostly orthogonal notions. We also need to consider the
limitations of current technology in relation to open tasks
that can be performed by people in natural environments.
It is clear that human higher mental functions, like lan‐
guage, vision and memory, and also intentional motor
behaviour, like walking or grasping objects, for instance,
are much more complex than the functions that can be

3Luis A. Pineda, Arturo Rodríguez, Gibran Fuentes, Caleb Rascon and Ivan V. Meza:
Concept and Functional Structure of a Service Robot

performed by the most sophisticated current machines, and
that a full understanding of these functionalities is far
removed from our current state of knowledge. Hence, it is
necessary to place a reasonable limit on the things we can
do with service robots. For this, we adopt the practical
dialogues and domain-independent hypotheses suggested
by Allen for dialogue systems [46], and pose the corre‐
sponding practical task and domain-independent hypotheses
for service robots, as follows: 1) The structure of practical
tasks, although complex, is significantly simpler than open
human tasks, and 2) within the genre of practical tasks, the
structure of the task and task management are independent
of task domains and the particular task being performed,
as has been elaborated upon in [45]. Practical tasks are then
restricted to scenarios with a well-defined context, com‐
posed by a number of agents with their corresponding
goals, expectations and intentions, referring to a particular
spatial and temporal situation where the service robot can
be expected to achieve its goals and satisfy the human-user
consistently. Current task scenarios or "tests" in the
RoboCup@Home competition are toy instances of practical
tasks and should be thought of as proof-of-concept scenar‐
ios for the corresponding real-world scenarios in which we
can expect service robots to perform in the future. The
domain-independent hypothesis, in turn, states that it is
indeed possible to produce machines that can be directed
to different domains and tasks with the same generic
structure and mechanisms. Accordingly, we restrict the
subject matter of service robot research and the conceptual
model of service robots to the study of the behaviours and
composition mechanisms subject to the practical tasks and
domain-independent hypotheses.

3. Conceptual model and task structure

We proceed now to discuss how the concept of a service
robot described above can be articulated in practice. For
this, we abstract over hardware devices and their associat‐
ed algorithms, and focus on the functionalities that these
provide from the point of view of the human-user. We refer
to each basic functionality in this set as a behaviour and to
the execution of a behaviour as a basic task, such that
complex tasks result from the combination of basic tasks,
giving rise to the notion of a task structure. Whenever the
basic tasks and the composition mechanism have an
explicit specification, we say that the service robot has a
representation of the task structure. This representation may
include knowledge of a number of situations that the robot
needs to go through during the execution of a task, and each
situation can be construed in terms of the expectations of
the robot in that situation, the actions that the robot needs
to perform whenever a particular expectation is met in the
situation, and the situation that results from performing
such an action (or what to do in case no expectation is met).
The task structure can be static or dynamic, depending on
whether it can be known and specified in advance or else
whether it instead unfolds along the way, respectively.

There is a very large range of possibilities regarding the
selection and specification of behaviours and composition
mechanisms, with their corresponding properties, and we
here pose that the conceptual model of a particular service
robot consists of this particular choice. Hence, the field of
service robots can be construed in terms of the study of
behaviours and composition mechanisms with their
theoretical properties and empirical validation. In a sense,
all service robots have a conceptual model; however, the
more explicit this is, the better the properties of the robot
are understood and capitalized upon by its designers and
users.

Furthermore, the catalogue of the robot’s abilities and its
composition mechanisms define the robot’s competence
and permit us to ask explicitly what it is that the robot can
in principle do. However, abstract specifications can be
implemented with different algorithms and computational
devices, and physical robots with the same conceptual
model may perform differently with different implemen‐
tations. In this regard, Chomsky’s distinction between
linguistic competence and performance [49] can be applied
to the field of service robots research: while "the task
grammar" defined by a set of basic behaviours and com‐
position mechanisms states the robot’s competence, the
actual robot’s performance depends upon the particular
choice of enabling technologies, system software and
physical devices.

3.1 Task specification language

The explicit representation and interpretation of the task
structure requires a specialized programming language so
that final applications can be developed and tested with in
reasonable time and with reasonable effort. Such a lan‐
guage should have enough expressive power to state a
basic and composite task in a declarative way, and should
also be rich enough to allow for the expression of content
and control information; it should also have abstraction
capabilities to express complex behaviours in a simple way.
The design and implementation of such a specification and
programming languages is another area of service robots
research, and significant efforts in this regard are already
apparent ([45, 50-55]).

3.2 Task structure and behaviours

Task structure and behaviours naturally define two layers
of functionality, as illustrated in Figure 1. The upper layer
stands for a composition of behaviours that constitute the
task structure of a particular application, and the lower
layer corresponds to the set of basic behaviours constitut‐
ing the robot’s native capabilities. For instance, the
Restaurant Test of RoboCup@Home is an application
defined in a scenario including a number of shelves where
different kinds of objects are placed, like food, snacks and
drinks, and also a number of tables where particular objects
should be delivered. The test involves a recognition round

4 Int J Adv Robot Syst, 2015, 12:6 | doi: 10.5772/60026

in which a human guide shows the robot where the shelves
and tables are, so that the robot is able to build a map of the
spatial situation; when this stage of the test is completed,
the robot is asked to get a number of specific objects and
take them to specific designated locations. An order might
be take the orange drink and the chips to table one, and the soup
to table two. The task structure consists of the situations that
the robot needs to visit in order to build the map, as well as
to take and deliver the order with its corresponding sub-
tasks. As the stages that the robot needs to go through in
this scenario are known in advance, the task structure is
static.

Basic behaviours in turn are structured objects defined in
terms of other behaviours, as illustrated by the hierarchies
of find, take and deliver. The behaviour find, for
instance, has as its input arguments a list of persons, a
gesture or a list of objects to be found, a discrete search path
and the specification of direction of observations (horizon‐
tal and vertical) that must be made at each path location,
and returns the identifier of the target or list of targets
found with their corresponding positions and poses, and
some additional control information including the status of
the last observation made in the search process. As can be
seen in Figure 1, find is a composite behaviour that uses
scan at each path position; scan in turn is a behaviour that
moves the neck horizontally and uses the tilt behaviour
at each scanning orientation, which in turn moves the neck

vertically and makes an observation at each tilt position.
The observations are properly controlled by the see
behaviour, which takes into account whether the object
sought is an object or a person, and so on.

However, independently of its internal structure, a behav‐
iour is also an atomic unit that can be a part of the task
structure directly. This is illustrated by the directed dotted
lines connecting situations of the task structure in the upper
layer with behaviours. From the perspective of the task
structure, the behaviours detect_face, find, see_ges-
ture and deliver, for instance, can be used on-demand
according to the application requirements. Furthermore,
the specification abstracts over the actual algorithms and
implementation considerations, and hence the abstract
functional requirement is met.

Finally, the behaviours in the bottom layer of Figure 1 are
grouped in four main areas of functionality, which are
search, hand, tracking and audio. This choice determines in
part a particular conceptual model, but other sets of
behaviours can be defined too, each giving rise to a
different model.

3.3 Task management

The explicit representation of the task structure also allow
the use of deliberative resources, knowledge-bases and
task management strategies dynamically with the

see_personsee_object

find

see

tilt

scan

recognize_facedetect_face

detect_headsee_face

see_gesture

memorize_face

approach_person

Search

approach

take

grasp

Hand

approach

deliver

relieve

point

learn_person

Tracking
follow guide ask

Audio
say audio_localization

sit1
Application

Layer

Behaviors
Layer

sit2 sit3 sitn

Task Structure

...

Figure 1. Application and Behaviours Levels

5Luis A. Pineda, Arturo Rodríguez, Gibran Fuentes, Caleb Rascon and Ivan V. Meza:
Concept and Functional Structure of a Service Robot

execution of a task. The task structure may also involve
knowledge of constraints, like the time allowed to
complete the task and the scores for achieving total and
partial goals, as well as knowledge of the robot’s own
physical resources, like the number of hands and their
state (i.e., holding or free) along the execution of the task,
and the locations and distances between the places of the
scenario, which may be collected dynamically. Addition‐
al a priori knowledge may be available, such as the time
it takes to accomplish a particular basic task and the
probability of completing it successfully.

An explicit representation of the task structure also permits
the identification of deliberative points where diagnosis,
planning and decision-making may be particularly rele‐
vant. A particular deliberative situation occurs, for in‐
stance, once the robot has received an order in the
Restaurant Test outlined above; at this point, the robot
should induce a number of action plans with different
partial and total goals - with their corresponding values -
and decide upon a course of action. Once the decision is
made, the robot should embark in the execution of the
selected plan properly. There may be other decision points
where current progress should be assessed, alternative
plans could be induced, and a new decision as to how to
proceed should be made.

We also need to consider that the scenarios in which service
robots are expected to perform are very noisy and that a
large number of contingencies may arise along the way, so
handling the time and other constraints is crucial in
achieving the goals; hence, explicit task management is
needed to supervise the process and make decisions along
the way. The explicit representation of the task structure
makes it possible to define such task management process‐
es along with the deliberative inferences required to
support it.

Task management is also relevant to handling faults due to
either external or internal contingencies that may arise in
the execution of behaviours. For instance, [56] present an
analysis of fault diagnosis within a logical framework using
naive physics and an ontology for hypothesis generation
and fault prevention. A more general kind of fault occurs
when the robot becomes out of context due to a mismatch
between its expectations and the events in the world. In this
latter situation, the robot may get back into context through
an abductive inference in relation to a common sense
theory about the states and actions that take place in the
environment - like the home - including causal rules
involving states and actions. Task management in this
setting may be construed as a pipeline process involving
fault detection, the formulation of a fault hypothesis
through abduction in relation to the causal theory of home
dynamics, and hypothesis ranking and the identification of
possible courses of action through planning and decision-
making. This pipeline is required, for instance, to handle
dynamic scenarios where the robot cannot accomplish an
explicit goal due to changes in the environment, as in the

execution of commands Type 3 of the General Purpose
Service Robot of the RoboCup@Home competition, as
discussed below.

4. Dynamic task structure

There are scenarios in which the structure of the task is not
available in advance and must be defined and executed
dynamically. An instance of this situation is the EGPSR
Test of the RoboCup@Home competition. In this test, the
robot is expected to accomplish composite tasks stated
through natural language commands. The commands can
be of Type 1, 2 or 3 according to their complexity, and the
robot must be able to infer the intentions expressed by the
human user and perform the corresponding actions. In the
following discussion, we distinguish the overt natural
language expression through which the order is expressed,
which we refer to as the command, from the act intended by
the user or the intention proper, which we refer to as the
speech act, as well as from the actual behaviour that has to
be performed by the robot to satisfy the intention or speech
act. Examples of these three types of commands are as
follows:

Type 1: Go to the kitchen, take the coke and leave the apartment

Type 2: Carry a snack to a table

Type 3:

Situation: There is nobody in the living room, but there
are people in the kitchen. The robot starts in the kitchen.

Command: Go to the living room and introduce yourself

Commands of Type 1 are constituted by a sequence of basic
commands, where each command expresses a basic
intention or speech act, which in turn corresponds to a basic
behaviour or sequence of behaviours that can be performed
by the robot directly. The interpretation of this type of
command requires no inference or problem solving, but the
parsing inference involved in mapping the command to its
corresponding speech act, and also in mapping the speech
act to its corresponding behaviour or sequence of behav‐
iours. For instance, the speech act move can be expressed
by a number of different expressions like move to, go to,
navigate to, leave or exit. This particular speech act has one
argument, which is the place or position where the robot is
ordered to move, and although there may be a number of
ways to express the command, the actual speech act is the
same, and there is a basic behaviour or sequence of
behaviours associated with each kind of speech act.

Commands of Type 2 are underspecified orders that need
to be determined either through linguistic interaction with
the human user or through conceptual inference (e.g.,
querying a conceptual taxonomy in the robot’s knowledge-
base), or else by a combination of these two strategies. In
the present example, the command states that a snack must
be carried to a table, but it does not specify which snack or
which table. In order to accomplish this order, the robot

6 Int J Adv Robot Syst, 2015, 12:6 | doi: 10.5772/60026

may ask the user to specify such information (i.e., solve the
task through linguistic interaction); alternatively, the robot
may find a particular object through vision, query whether
it is a snack in its knowledge-base, and take it to any table
whose location might also be stored in the knowledge-base
(i.e., solve the task through conceptual inference); a third
strategy might consist of finding the snack and asking the
user for the table (i.e., combining interaction and inference).
In any case, once the references are determined, the Type 2
command is reduced to a Type 1 command, which can be
executed directly as before.

Commands of Type 3 also involve error detection and
explicit task management. In the present example, the robot
will go to the living room but will need to realize that
nobody is there and execute a task management action,
which might be to search for people in other locations. Error
detection and task management are essential for robust
behaviour, as robots need to be able to cope with a large
number of contingencies that can appear during the
execution of a task.

The higher the type of command, the higher the parsing
effort; but assuming a robust and comprehensive parsing
strategy, the increase in the difficulty of the three types of
commands depends mostly on the need to engage in
linguistic or visual interaction supported by inference, and
also on the need to be aware of whether the actions
performed are successful and to carry on with the appro‐
priate actions. This may require explicit task management,
involving diagnosis through abduction, planning and
decision-making, considering any constraints and a priori
knowledge, as discussed above for the task structure in
general.

Another consideration is that commands, speech acts and
behaviours do not necessarily correspond univocally;
although this may be the case for particular commands, this
is not the case in general, and several commands may
correspond to the same speech act, and a speech act may
require the execution of several behaviours. In addition, the
same command may correspond to different speech acts,
and the context may be essential for resolving the ambigu‐
ity. A study of the sentence generator for the EGPSR Test
(RoboCup@Home’s test) shows that there are only 11
speech acts that need to be understood by the robot; these
are as follows: move, find, say, ask, get, memorize,
recognize, follow, point, retrieve and carry. The
set of relations between linguistic forms and speech acts for
the EGPSR Test is summarized in the following specifica‐
tion, where the expressions in italics to the left of => are the
verbs heading the possible command expressions, and the
word to the right stands for the name of the intended speech
act. As can be seen, some speech acts may be stated in
several ways, like move, and one surface form, bring, has
two different interpretations.

1. move to, go to, navigate to, leave, exit => move

2. find, detect, identify => find

3. introduce, tell me something about you => say

4. ask => ask

5. get, take, grasp, fetch => get

6. memorize => memorize

7. recognize => recognize

8. follow => follow

9. point, show => point

10. retrieve, bring => retrieve

11. carry, bring => carry

The relation between speech acts and the corresponding
behaviours is not one-to-one either. In this example, there
are 11 speech acts but 25 behaviours, as shown in Figure 1;
there are also speech acts that need to be assembled out of
several behaviours, and there are also behaviours that do
not correspond with a unique speech act. Indeed, the
different kinds of relations between speech acts and
behaviours mostly determine the type of command.

In addition to the behaviours, the EGPSR Test requires the
definition of a dynamic composition mechanism through
which complex behaviours are assembled out of basic ones.
For this, we use the symbol ==>, which has the speech act
as its left and the behaviour specification as its right. The
mechanism is defined in relation to the command types as
follows:

Commands of Type 1 state the basic case and relate a fully
determined speech act to a particular behaviour, for
instance:

move ==> move.

get ==> find, grasp.

In addition, a command may be interpreted in terms of
behaviours and commands, as follows:

retrieve ==> move, get, move, deliver.

carry ==> get, move, deliver.

This shows that there is a feedback cycle between the
linguistic (i.e., speech acts) and the behavioural component
giving rise to complex behaviours, but with a simple and
well-structured interpretation regime.

Commands of Type 2 involve the specification of the
arguments of the speech act by means of conceptual
inference, and possibly some linguistic or visual interaction
strategy, for instance:

carry(Class, Table) ==> query_kb(Class, Object),

 ask(Table),

 carry(Object, Table).

where query_kb is an additional internal behaviour
through which the robot’s conceptual knowledge-base can
be queried. Additional action schema of this kind can be
defined, thereby enriching the robots set of strategies,
which can be used non-deterministically.

7Luis A. Pineda, Arturo Rodríguez, Gibran Fuentes, Caleb Rascon and Ivan V. Meza:
Concept and Functional Structure of a Service Robot

Commands of Type 3 add explicit task management to the
behaviour so that appropriate actions can be taken in case
performance errors occur, or in case the task cannot be
executed in the actual scenario. To handle this type of
command, a status argument must be included in the
specification of all behaviours, for instance:

retrieve(status) ==> move(status_move1),

 get(status_get),

 move(status_move2),

 deliver(status_deliver).

carry(status) ==> get(status_get),

 move(status_move),

 deliver(status_deliver).

The error handling and task management processes check
the status of each behaviour and decide whether to proceed
with the task or take an appropriate task management
action.

Commands of Type 1 and Type 2 should proceed straight‐
forwardly according to the rules of the competition, as the
status argument of the behaviours must always be ’ok’;
however, this argument in commands of Type 3 may have
a different value, in which case the system must engage in
a task management process involving diagnosis, planning
and decision-making; this is, deliberative behaviour, in
order to proceed with the task. The status arguments are
defined for behaviours but not for speech acts, as these are
the interpretation of the intentions expressed by the users,
and hence the specification of the intended behaviour. In
the present case, the robot ought to be able to make a
diagnosis as to why there are no people in the room and
come to the plausible conclusion that they have moved to
another room, make a plan for visiting other rooms, and
execute the find behaviour recurrently until the task is
accomplished. In some scenarios, the system may alterna‐
tively engage in a clarification protocol to decide what to
do if there are people to talk to; but in general, both
interaction and deliberative abilities should be available.

Task management involving deliberative behaviour is, of
course, quite complex and the conceptual model of the
robot should include the required supporting inferential
and knowledge-base resources, but once again the partic‐
ular algorithms and implementation strategies are not part
of the functional specification. In particular, the mapping
from natural language statements to the corresponding
speech acts is not a part of the conceptual model. This
facility should of course be available, but speech and
language processing are enabling technologies - as any
other - and there are several possible strategies and
implementations; hence, no particular mechanism should
be assumed in the conceptual model.

In summary, the specification of the EGPSR highlights that,
in addition to the predefined static composition mechanism
illustrated in Section 3, there are scenarios where such a
priori knowledge is not available and tasks have to be
composed dynamically by the interpretation of commands

in terms of their corresponding speech acts, and the
mapping of these latter objects into their corresponding
behaviours in the lower layer in Figure 1 directly. The rules
in this section define such a dynamic mapping for the
EGPSR test in the RoboCup@Home competition.

Figure 2. Interaction-oriented Cognitive Architecture (IOCA)

A final remark may be made that applications whose task
structure can be defined in advance through analysis - like
the standard tests of the RoboCup@Home competition - can
also be thought of as a behaviour schema that could be
specified and performed as a sequence of behaviours that
can be interpreted and executed by dynamic composition
mechanisms, as illustrated here for the EGPSR Test. If this
requirement is met, particular tests (like Cocktail Party,
Clean It Up, Emergency Situation, etc.) can be specified as
scripted behaviours that can be interpreted directly, and
these tests should not require a programming effort.

5. An instantiation of the conceptual model

In this section, we briefly describe a particular instantiation
of the conceptual model. The central aspect is the definition
of a machine for the declarative specification and interpre‐
tation of the task structure of final applications, and an
interaction-oriented cognitive architecture IOCA [47] to
relate such machinery with the perception and action
algorithms and the system’s software. The task structure is
represented through abstract interaction protocols called
dialogue models (or DMs), which in turn are specified and
interpreted through the SitLog programming language
[45], whose interpreter is the central component of IOCA,
as illustrated in Figure 2.

IOCA is a cognitive architecture with three layers directed
to 1) reactive, 2) interpretation and action specification, and
3) representation and inference levels, from the bottom to
the top respectively. In this respect it differs from sub‐
sumption architectures, like brooks [45], which reject
representations, and also from multi-robot coordination
architectures, which place a planning layer at the top as its
main deliberative behaviour [18], whose discussion

8 Int J Adv Robot Syst, 2015, 12:6 | doi: 10.5772/60026

belongs to the algorithmic level of analysis advanced in the
present paper.

SitLog’s interpreter is written in Prolog, and SitLog’s
programs follow closely Prolog’s notation. Each dialogue
model consists of a set of situations or information states,
and a dialogue model has a diagrammatic representation
as a graph of situations. A situation in turn consists of a set
of expectation and action pairs in addition to the situation
that is reached when an expectation is met (i.e., when an
expected state or event in the world is acknowledged
through perceptual interpretation) and its associated action
is performed, in addition to other content and control
information. Situations are represented through a list of
attribute-value pairs, as shown above.

[

 id ==> ID,

 type ==> Type,

 prog ==> Local_Prog,

 in_arg ==> In_Arg,

 out_arg ==> Out_Arg,

 embedded_dm ==> Embedded_Dialogue_Model,

 arcs ==>[

 Expect1:Action1 => Next_Sit1,

 Expect2:Action2 => Next_Sit2,

 ...

 Expectn:Actionn => Next_Sitn

],

 diag_mod ==> Diag_Mod_ID

]

The symbols at the left of ==> are the attribute names,
and the symbols at the right stand for their correspond‐
ing values, which can be variables or expressions through
which the expectations, actions, next situations and
control information are expressed. Each situation has its
ID, type and input and output arguments; the type
indicates the kind of modality that is involved in the
perceptual act through which expectations are acknowl‐
edged (e.g., vision, language, etc.). The attribute prog has

as its value a local program which is executed uncondi‐
tionally when the situation is reached. If the type of
situation is recursive, there is an embedded DM which is
executed within the scope of the situation, and the system
as a whole implements a recursive transition network
which is unfolded along the execution of the task. The
attribute arcs, in particular, has as its value the list of
expectation:action pairs of the situation, where the operator
=> relates each of these pairs with the next situation. DMs
and situations can have arguments which are called by
reference, and the diag_mod attribute permits the binding
of output arguments with local information computed
during the situation’s interpretation.

There are three main kinds of dialogue models standing for
the static task structure: 1) the task structure of final
applications, 2) the set of generic behaviours in the concep‐
tual model, and 3) the recovery protocols that are evoked
when the flow of interaction is interrupted due to a
mismatch between the robot’s expectations at the situation
and the states and events in the world. DMs of Kind 1 are
developed by final application programmers, who rely
only on the set of behaviours defined in the conceptual
model and the specification and programming facilities
provided by SitLog. Dialogue Models of Kind 2, on the
other hand, are a part of the specification of the conceptual
model proper, and are developed by the robot’s production
team. Behaviours have an internal structure which is
codified in SitLog, and also an external aspect which
depends upon the perception algorithms that support the
interpretation of external information as well as upon the
action algorithms that render the concrete actions per‐
formed by the robot through its actual physical devices.
Lastly, the recovery protocols can be specific to final
applications and hence developed by application pro‐
grammers, or alternatively generic recovery protocols that
enrich the conceptual model and are developed by the
robot’s production team.

guided_tour take_orders dispense

find take deliver

restaurant

dispense

follow

guided_tour

ask

take_orders

ask

finish
success:ɛ success:ɛ success:ɛ

success:ɛ

success:ɛ

success:ɛ success:ɛ success:ɛgg

success:ɛ

position

∨
pointing

waving

∨

Orders []≠

Orders=[]

Figure 3. Static Task Structure

9Luis A. Pineda, Arturo Rodríguez, Gibran Fuentes, Caleb Rascon and Ivan V. Meza:
Concept and Functional Structure of a Service Robot

initial
situation

ask
(Commands,
SpeechActs

wake_up:

nothing:

error:

success:

action_reasoner(SpeechActs) = TasksList

dispatch
(FirstTask)

success:

RestTasks ≠ []

manage
(CurrentTask)

error:

success:

RestTasks ≠ []

TasksList ≠ []

move(origin)

TasksList = []

RestTasks = []

RestTasks = []

success

end_task:say('I finished')

error

error:say('Something is wrong')

gpsr_main

Figure 4. SitLog’s specification of a General Purpose Service Robot

5.1 Example of a static task structure: The restaurant test

An instance of an application with a static task structure is
the Restaurant Test described above in Section 3.2. The task

is composed of a main DM and three top-subordinated
DMs. The main DM includes three situations in addition to
the final one, which is compulsory for all DMs, as shown
in Figure 3. In the first, the human guide shows the robot

10 Int J Adv Robot Syst, 2015, 12:6 | doi: 10.5772/60026

the locations of the shelves and the tables, and the robot
builds a map of the site dynamically; in the second, the
robot receives the order and in the third it moves to the
shelves where the desired objects are located, according to
their classes, and searches for the objects and takes them to
their designated tables. Each of the three main situations
embeds a subtask, represented by a subordinated DM, and
instances of these models are executed recurrently as many
times as needed. These subtasks can be executed in a
number of ways, and the task needs to be managed
dynamically, as explained in Section 3.3. In the scheme,
both the main and the subordinated DMs may employ the
behaviours in Figure 1 directly.

5.2 Example of a dynamic task structure: The EGPSR test

We illustrate now an instance of the specification and
interpretation of a dynamic task structure. For this, we
present the DM for the interpretation and execution of the
three types of commands of the EGPSR Test as described
above in Section 4. The central component of this test is a
dialogue model that, in addition to managing the start and
end protocols of the overall task, listens to the command,
interprets it as a list of speech acts, and maps this latter list
into the corresponding list of behaviours or tasks, which
are executed one at a time. The SitLog’s diagram of the
dynamic task composition DM is shown in Figure 4. In the
initial situation, the robot is waiting to be woken through
a speech command or to be told that the test is finished. In
case nothing happens, the robot remains in this initial
situation (i.e., it is its own next situation). Once the robot is
awake, the listen command situation is reached; this is a
recursive situation in which the robot asks the user for a
command through the ask behaviour, which also parses
the command and returns a list of speech acts in the variable
SpeechActs. Next, the action’s reasoner translates this list
into the corresponding list of behaviours, which is codified
in the variable TasksList. The situation dispatch executes the
behaviours in this latter list, one at a time. This situation is
reached recurrently until the list of behaviours is empty.
Otherwise, in case of error, the situation manage is reached.
This is a recursive situation that handles the task manage‐
ment knowledge available to the robot. This knowledge is
codified in a library of error management dialogue models,
including at least one for each kind of status. The DMs in
this library use behaviours, inferential strategies and
interactive protocols to manage the contingency, allowing
the robot to continue with the main task. If the task
management action succeeds, the dispatch situation is
invoked again with the list of the pending behaviours,
which are executed one at a time as before; otherwise, the
EGPSR’s DM is ended in an error state. Finally, the EGPSR
Test requires the execution of three commands, one of each
kind, and the robot needs to remain waiting after the
execution of a command (while other robots are perform‐
ing) before it is called into action again.

The amount of task management knowledge has a very
large impact on the overall strength of the service robot and
is indispensable in the execution of commands of Type 3,
as without this kind of knowledge the robot could not
recover from unexpected obstacles or arbitrary changes in
the scenario. The current strategies use heuristics and
schematic behaviours to deal with expected test scenarios,
like the strategies retrieve(status) and carry(status) described
in Section 4; however, to our knowledge, no service robot
has been able to successfully complete a command of this
type in a competitive setting in the RoboCup Competition
as of date. On a deeper level, the resolution of this latter
type of command involves common sense knowledge and
a more complete specification should be enriched with an
explicit set of causal relations that hold in a home environ‐
ment. Hence, a dynamic diagnostic for unexpected situa‐
tions should be performed through abductive inferences
yielding the best explanation in relation to the given causal
theory. Practical tasks should be provided with such types
of causal theories of the application domain so that service
robots can perform common sense inferences but within
the boundaries of a closed domain.

The present case studies for both the static and dynamic
tasks are illustrations of how the conceptual model is
implemented; however, the same conceptual model has
been used in the implementation of the rest of the Robo‐
Cup@Home tests, providing additional support for the
generality of the present approach.

6. Description of the robot Golem-II+

Golem-II+ is our in-house service robot, presented in Figure
5. It is based on a PeopleBot model, with several major
enhancements carried out in-house, both software- and
hardware-wise. In Table 2, a brief summary is presented of
its hardware and the software libraries used.

Figure 5. The Golem-II+ Service Robot

11Luis A. Pineda, Arturo Rodríguez, Gibran Fuentes, Caleb Rascon and Ivan V. Meza:
Concept and Functional Structure of a Service Robot

Module Hardware Software Libraries

Dialogue manager – SitLog, Prolog

Knowledge-base – Prolog

Vision
Microsoft Kinect, Point

Grey Flea Camera
SVS, OpenCV, PCL, and

OpenNI

Navigation

Mobile Robots Inc.
PeopleBot Platform,
Hokuyo UTM-30LX

Laser

Player

Voice recognition
RODE VideoMic, M-

Audio Fast Track
Interface

JACK, PocketSphinx

Voice synthesizer
Infinity 3.5-Inch Two-

Way Built-in
Loudspeakers

PulseAudio, Festival TTS

Object
Manipulation

In-house Built Robotic
Arm and Gripper

Dynamixel RoboPlus

Camera/Mic.
Movement

In-house Built Robotic
Neck

Dynamixel RoboPlus

Table 2. Software Libraries used by the IOCA Modules and the Hardware
of Golem-II+

7. Conclusions

In this paper, we have introduced and discussed a concept
of a service robot. A service robot is an entity that is able to
perform a number of basic behaviours and compose them
in the execution of complex tasks. This concept is articulat‐
ed in practice through the definition of an explicit concep‐
tual model for particular service robots. We have discussed
how the conceptual model and framework can be applied
in general, and we have also illustrated the model with a
particular implementation in the robot Golem-II+ with the
IOCA architecture and the SitLog programming language,
which have been developed within the context of the
Golem Project2. Video demonstrations of the examples
discussed in this paper, as well as the actual SitLog code,
can be accessed at http://golem.iimas.unam.mx/servicerobot.

As an overall reflection, the present framework permits us
to conceive of service robots research as a discipline of its
own, consisting of the study and functional specification of
useful behaviours from the point of view of human users
and the ways in which these can be combined in the
composition of complex tasks, including the design and
implementation of specification languages for robot tasks.
We propose that a clear demarcation between research into
service robots and research into their enabling technologies
and system software facilitates communication and
collaboration, as individual researchers and groups will
have a clearer idea of what the focus and system level are
in relation to which their efforts are made. We also suggest
that this demarcation of labour will foster a virtuous cycle

between service robot research and enabling technologies,
yielding progress in the field as a whole.

More generally, the definition of the conceptual model in
terms of behaviours and composition mechanisms not only
provides for a clear demarcation of application and robot
development teams, but also determines the set of enabling
technologies that are required to support a given set of
behaviours. This latter specification is also functional, and
the robot’s design team must decide on particular algo‐
rithms and system design considerations. There may be a
large range of technologies and implementations to choose
from and a given selection will have an impact on the
robot’s performance but not on its competence, as this is
determined by conceptual model. A final aspect of the
design as a whole is the system software required to
support the robot’s architecture, which is the backbone of
the robot. However, this is also an implementation decision
that will have an impact on the robot’s performance but not
on its competence.

Finally, the conceptual model and a declarative language
to state the task structure permit us to demarcate clearly the
activities related to the development of the robot proper
from the activities related to specifying the structure of a
particular task or programming a particular application. In
current practice, these two activities are heavily interwo‐
ven, as developers of enabling technologies and system
programmers need to take into account specific aspects of
particular applications. Moreover, application developers
need to work with algorithms and system programming,
making rather difficult the development and testing of final
applications. Like cars, if a robot is offered to the general
public, the focus of the robot-maker should be what the
robot can do in principle and how well it performs in
practical tasks (e.g., how reliable and efficient it is) so that
final applications can be easily specified and developed,
and robots can be used in practice by human users.

8. Acknowledgements

We would like to thank the support of the members of the
Golem Group who participated in the development of the
Golem-II+ robot as follows: Lisset Salinas, Mauricio Reyes,
Hernando Ortega, Varinia Estrada, Mario Peña, Joel Durán,
Albert Orozco and Sebastián Chimal. We also acknowledge
the support of grants CONACYT’s 178673, ICYTDF-209/12
and PAPIIT-UNAM’s IN-107513.

9. References

[1] A. Elfes. Using occupancy grids for mobile robot
perception and navigation. Computer, 22(6):46–57,
June 1989.

2 http://golem.iimas.unam.mx/

12 Int J Adv Robot Syst, 2015, 12:6 | doi: 10.5772/60026

[2] Y. Koren and J. Borenstein. Potential field methods
and their inherent limitations for mobile robot
navigation. In Robotics and Automation, 1991.
Proceedings., 1991 IEEE International Conference on,
pages 1398–1404 vol.2, Apr 1991.

[3] J. Minguez and L. Montano. Nearness diagram
(ND) navigation: collision avoidance in trouble‐
some scenarios. Robotics and Automation, IEEE
Transactions on, 20(1):45–59, Feb 2004.

[4] J.W. Durham and F. Bullo. Smooth Nearness-
Diagram Navigation. In Intelligent Robots and
Systems, 2008. IROS 2008. IEEE/RSJ International
Conference on, pages 690–695, Sept 2008.

[5] G. Grisetti, C. Stachniss, and W. Burgard. Improved
Techniques for Grid Mapping With Rao-Blackwel‐
lized Particle Filters. Robotics, IEEE Transactions on,
23(1):34–46, Feb 2007.

[6] J. Stuckler, D. Holz, and S. Behnke. Robocup@home:
Demonstrating everyday manipulation skills in
robocup@home. IEEE Robotics Automation Maga‐
zine, 19(2):34–42, 2012.

[7] Sachin Chitta, E. Gil Jones, Matei Ciocarlie, and
Kaijen Hsiao. Mobile Manipulation in Unstructured
Environments: Perception, Planning, and Execu‐
tion. IEEE Robotics and Automation Magazine, 19(2):
58–71, 2012.

[8] Siddhartha Srinivasa, Dmitry Berenson, Maya
Cakmak, Alvaro Collet Romea, Mehmet Dogar,
Anca Dragan, Ross Alan Knepper, Tim D Niemuel‐
ler, Kyle Strabala, J Michael Vandeweghe, and
Julius Ziegler. Herb 2.0: Lessons learned from
developing a mobile manipulator for the home.
Proceedings of the IEEE, 100(8):1–19, 2012.

[9] Charles C. Kemp. Robot manipulation of human
tools: Autonomous detection and control of task
relevant features. In Proceedings of the IEEE Interna‐
tional Conference on Development and Learning, 2006.

[10] Ashesh Jain, Brian Wojcik, Thorsten Joachims, and
Ashutosh Saxena. Learning trajectory preferences
for manipulators via iterative improvement. In
C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahrama‐
ni, and K.Q. Weinberger, editors, Advances in Neural
Information Processing Systems 26, pages 575–583.
2013.

[11] Alvaro Collet, Manuel Martinez, and Siddhartha S.
Srinivasa. The MOPED framework: Object Recog‐
nition and Pose Estimation for Manipulation. The
International Journal of Robotics Research, 30:1284–
1306, 2011.

[12] A. Pronobis, B. Caputo, P. Jensfelt, and H. I.
Christensen. A realistic benchmark for visual
indoor place recognition. Robotics and Autonomous
Systems, 58(1):81–96, 2010.

[13] Hema Swetha Koppula, Rudhir Gupta, and Ashu‐
tosh Saxena. Learning human activities and object

affordances from rgb-d videos. International Journal
of Robotics Research, 32(8):951–970, 2013.

[14] Matthew Johnson and Yiannis Demiris. Perceptual
perspective taking and action recognition. Interna‐
tional Journal of Advanced Robotic Systems, 2(4):301–
308, 2005.

[15] Pablo Espinace, Thomas Kollar, Nicholas Roy, and
Alvaro Soto. Indoor scene recognition by a mobile
robot through adaptive object detection. Robotics
and Autonomous Systems, 61(9):932—947, 2013.

[16] M Bernardine Dias, Robert Zlot, Nidhi Kalra, and
Anthony Stentz. Market-based multirobot coordi‐
nation: A survey and analysis. Proceedings of the
IEEE, 94(7):1257–1270, 2006.

[17] Robert Zlot and Anthony Stentz. Market-based
multirobot coordination for complex tasks. The
International Journal of Robotics Research, 25(1):73–
101, 2006.

[18] Dani Goldberg, Vincent Cicirello, M Bernadine
Dias, Reid Simmons, Stephen Smith, and Anthony
Stentz. Market-based multi-robot planning in a
distributed layered architecture. In Multi-robot
systems: From swarms to intelligent automata: Proceed‐
ings from the 2003 international workshop on multi-
robot systems, volume 2, pages 27–38, 2003.

[19] M Bernardine Dias. Traderbots: A new paradigm
for robust and efficient multirobot coordination in
dynamic environments. PhD thesis, Carnegie
Mellon University, 2004.

[20] Kai Zhang and Xiabo Li. Human-robot team
coordination that considers human fatigue. Int J Adv
Robot Syst, 72(3-4):541–558, 2013.

[21] Kai Zhang, Jr. Collins, EmmanuelG., and Adrian
Barbu. An efficient stochastic clustering auction for
heterogeneous robotic collaborative teams. Journal
of Intelligent Robotic Systems, 11(91), 2014.

[22] Kai Zhang, Emmanuel G Collins Jr, and Dongqing
Shi. Centralized and distributed task allocation in
multi-robot teams via a stochastic clustering
auction. ACM Transactions on Autonomous and
Adaptive Systems (TAAS), 7(2):21, 2012.

[23] Multiple Direction-of-Arrival Estimation for a
Mobile Robotic Platform with Small Hardware
Setup. In Haeng Kon Kim, Sio-Iong Ao, Mahyar A.
Amouzegar, and Burghard B. Rieger, editors,
IAENG Transactions on Engineering Technologies,
volume 247 of Lecture Notes in Electrical Engineer‐
ing, pages 209–223. Springer Netherlands, 2014.

[24] Kazuhiro Nakadai, Toru Takahashi, Hiroshi G.
Okuno, Hirofumi Nakajima, Yuji Hasegawa, and
Hiroshi Tsujino. Design and Implementation of
Robot Audition System ’HARK’ — Open Source
Software for Listening to Three Simultaneous
Speakers. Advanced Robotics, 24(5-6):739–761, 2010.

13Luis A. Pineda, Arturo Rodríguez, Gibran Fuentes, Caleb Rascon and Ivan V. Meza:
Concept and Functional Structure of a Service Robot

[25] The ManyEars open framework. Autonomous
Robots, 34(3):217–232, 2013.

[26] DeLiang Wang and Guy J. Brown, editors. Compu‐
tational auditory scene analysis: Principles, Algorithms,
and Applications. IEEE Press/Wiley-Interscience,
2006.

[27] E. Martinson and A. Schultz. Robotic Discovery of
the Auditory Scene. In Robotics and Automation, 2007
IEEE International Conference on, pages 435–440,
April 2007.

[28] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh
Faust, Tully Foote, Jeremy Leibs, Rob Wheeler, and
Andrew Y. Ng. ROS: an open-source Robot Oper‐
ating System. In ICRA Workshop on Open Source
Software, volume 3, 2009.

[29] Brian Gerkey, Richard T. Vaughan, and Andrew
Howard. The Player/Stage Project: Tools for Multi-
Robot and Distributed Sensor Systems. In 11th
International Conference on Advanced Robotics (ICAR
2003), pages 317–323, June 2003.

[30] Komei Sugiura, Naoto Iwahashi, Hisashi Kawai,
and Satoshi Nakamura. Situated spoken dialogue
with robots using active learning. Advanced Robot‐
ics, 25(17):2207–2232, 2011.

[31] Xiaoping Chen, Jiongkun Xie, Jianmin Ji,, and
Zhiqiang Sui. Toward open knowledge enabling for
human-robot interaction. Journal of Human-Robot
Interaction, 1(2):100 – 117, 2012.

[32] Kyuhwa Lee, Yanyu Su, Tae-Kyun Kim, and
Yiannis Demiris. A syntactic approach to robot
imitation learning using probabilistic activity
grammars. Robotics and Autonomous Systems, 61(12):
1323–1334, 2013.

[33] M. Do, T. Asfour, and R. Dillmann. Towards a
unifying grasp representation for imitation learning
on humanoid robots. In IEEE International Confer‐
ence on Robotics and Automation, pages 482–488, 2011.

[34] Petar Kormushev, Sylvain Calinon, and Darwin G.
Caldwell. Imitation learning of positional and force
skills demonstrated via kinesthetic teaching and
haptic input. Advanced Robotics, 25(5), 2011.

[35] George Konidaris, Scott Kuindersma, Roderic
Grupen, and Andrew Barto. Robot learning from
demonstration by constructing skill trees. Interna‐
tional Journal of Robotics Research, 31(3):360–375,
2012.

[36] Manuel Mühlig, Michael Gienger, and Jochen Steil.
Interactive imitation learning of object movement
skills. Autonomous Robots, 32(2):97–114, 2012.

[37] Sylvain Calinon, Florent D’halluin, Eric L. Sauser,
Darwin G. Caldwell, and Auge G. Billard. Learning
and reproduction of gestures by imitation. IEEE
Robotics Automation Magazine, 17(2):44–54, 2010.

[38] R. Stiefelhagen, H.K. Ekenel, C. Fugen, P. Giesel‐
mann, H. Holzapfel, F. Kraft, K. Nickel, Voit, and

Alex Waibel. Enabling Multimodal Human
#x2013;Robot Interaction for the Karlsruhe Human‐
oid Robot. Robotics, IEEE Transactions on, 23(5):840–
851, Oct 2007.

[39] HiroshiG. Okuno, Kazuhiro Nakadai, and Hiroaki
Kitano. Social Interaction of Humanoid Robot
Based on Audio-Visual Tracking. In Tim Hendtlass
and Moonis Ali, editors, Developments in Applied
Artificial Intelligence, volume 2358 of Lecture Notes in
Computer Science, pages 725–735. Springer Berlin
Heidelberg, 2002.

[40] Maia Garau, Mel Slater, Simon Bee, and Martina
Angela Sasse. The Impact of Eye Gaze on Commu‐
nication Using Humanoid Avatars. In Proceedings of
the SIGCHI Conference on Human Factors in Comput‐
ing Systems, CHI ’01, pages 309–316, New York, NY,
USA, 2001. ACM.

[41] T. Kanda, M. Shiomi, Z. Miyashita, H. Ishiguro, and
Hagita. A Communication Robot in a Shopping
Mall. IEEE Transactions on Robotics, 26(5):897–913,
2010.

[42] Feng Wu, Shlomo Zilberstein, and Xiaoping Chen.
online planning for multi-agent systems with
bounded communication. artificial intelligence,
175(2):487 – 511, 2011.

[43] Allen Newell. The Knowledge Level: Presidential
Address. AI Magazine, 2(2):1–20, 1981.

[44] David Marr. Vision. W. H. Freeman and Company,
New York, 1982.

[45] Luis A. Pineda, Lisset Salinas, Ivan Meza, Caleb
Rascon, and Gibran Fuentes. SitLog: A Program‐
ming Language for Service Robot Tasks. Interna‐
tional Journal of Advanced Robotic Systems, pages 1–
12, 2013.

[46] James F. Allen, Donna K. Byron, Myroslava Dzi‐
kovska, George Ferguson, Lucian Galescu, and
Amanda Stent. Toward Conversational Human-
Computer Interaction. AI MAGAZINE, 22(4):27–38,
2001.

[47] Luis A. Pineda, Ivan Meza, Hector Aviles, Carlos
Gershenson, Caleb Rascon, Monserrat Alvarado,
and Lisset Salinas. IOCA: Interaction-Oriented
Cognitive Architecture. Research in Computing
Science, 54:273–284, 2011.

[48] Rodney Brooks. Intelligence without representa‐
tion. Artificial Intelligence, (47):139–159, 1991.

[49] Noam Chomsky. Aspects of the Theory of Syntax.
Cambridge, MA: MIT Press, 1965.

[50] Martin Lotzsch, Max Risler, and Matthias Jüngel.
XABSL - A pragmatic approach to behavior engi‐
neering. In Proceedings of IEEE/RSJ International
Conference of Intelligent Robots and Systems, pages
5124–5129, 2006.

[51] Tim Niemuller, Alexander Ferrein, and Gerhard
Lakemeyer. A lua-based behavior engine for

14 Int J Adv Robot Syst, 2015, 12:6 | doi: 10.5772/60026

controlling the humanoid robot nao. In Proceedings
of the RoboCup Symposium 2009, pages 240–251, 2009.

[52] Jonathan Bohren, Radu Bogdan Rusu, E. Gil Jones,
Eitan Marder-Eppstein, Caroline Pantofaru, Melon‐
ee Wise, Lorenz Mösenlechner, Wim Meeussen, and
Stefan Holzer. Towards autonomous robotic
butlers: Lessons learned with the pr2. In Proceedings
of the International Conference on Robotics and Auto‐
mation, pages 5568–5575, 2011.

[53] S. Tousignant, E. Van Wyk, and M. Gini. Xrobots: A
flexible language for programming mobile robots
based on hierarchical state machines. In Proceedings
of the International Conference on Robotics and Auto‐
mation, pages 1773–1778, 2012.

[54] Thijs Jeffry de Haas, Tim Laue, and Thomas Röfer.
A scripting-based approach to robot behavior
engineering using hierarchical generators. In
Proceedings of the International Conference on Robotics
and Automation, pages 4736–4741, 2012.

[55] Stefan Schiffer, Alexander Ferrein, and Gerhard
Lakemeyer Reasoning with qualitative positiona‐
linformation for domestic domains in the situation
calculus. Journal of Intelligent and Robotic Systems,
66(1–2):273–300, 2012b.

[56] Anastassia Kuestenmacher, Naveed Akhtar, Paul
G. Plöger, and Gerhard Lakemeyer. Towards robust
task execution for domestic service robots. Journal
of Intelligent Robotic Systems, pages 1–29, 2013.

15Luis A. Pineda, Arturo Rodríguez, Gibran Fuentes, Caleb Rascon and Ivan V. Meza:
Concept and Functional Structure of a Service Robot

