
Multiple Direction-of-Arrival Estimation for a
Mobile Robotic Platform with Small Hardware
Setup

Caleb Rascon and Luis Pineda

Abstract Knowledge of how many users are there in the environment, and where
they are located is essential for natural and efficient Human-Robot Interaction
(HRI). However, carrying out the estimation of multiple Directions-of-Arrival (multi-
DOA) on a mobile robotic platform involves a greater challenge as the mobility of
the service robot needs to be considered when proposing a solution. This needs
to strike a balance with the performance of the DOA estimation, specifically the
amount of users the system can detect, which is usually limited by the amount
of microphones used. In this contribution, an appropriately carriable small and
lightweight hardware system (based on a 3-microphone triangular system) is used,
and a fast multi-DOA estimator is proposed that is able to estimate more users than
the number of microphones employed.

Key words: HRI, lightweight, microphone array, mobile, multiple direction of ar-
rival, reverberation, service robot

1 Introduction

The problem known as Multiple Direction-of-Arrival (multi-DOA) Estimation pro-
vides a unique challenge when being carried out in a mobile hardware platform, such
as service robots. However, it plays an essential part of a natural Human-Robot In-
teraction (HRI), as it is important to know from where the users are talking to the
robot and how many are there in the environment.

Caleb Rascon
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1



2 Caleb Rascon and Luis Pineda

From the technical point of view, knowing the direction of the user in relation
to the robot can benefit other system modules. For instance, once the direction of
the user is known, voice recognition can be improved using directional noise can-
cellation [7] or by simply turning a directional microphone in the direction of the
user.

In addition, it is well known that face detection and recognition provide rich
information relevant to HRI: the identity of the user, the direction the user is looking
at, his mood, etc. [4, 20]. However, such analysis is carried out by visual means, and
the user cannot always be expected to be in the line of sight of the robot. When
dealing with human beings, by sorts of providence, the mouth is expected to be
in the vicinity of the face of the user, which means that knowing the direction of
the user by speech alone also provides a good heuristic of the location of his/her
face. Using this information to face the user tackles the visual-range-limitation issue
straight on.

Moreover, the robot may be expected to be in a situation where several users
are in the environment and actively speaking to the robot, such as taking a food
order or while guiding a group of users in a tour. Knowledge of the amount of
users and from where are they talking to the robot can be used to provide acoustic
cues to separate several streams of audio data from the environment based on the
Direction-of-Arrival (DOA) of the various sound sources and provide the single-
source streams to the Automatic Speech Recognizer. This provides the functionality
of being able to carry out ASR of multiple users that may be interrupting each other,
an occurrence bound to happen in a multiple-user scenario.

From the perspective of the user, the action of the robot facing him/her when be-
ing talked to acts as a type of bodily feedback which the user will naturally interpret
as if the robot is ‘putting attention’ to him/her. This interpretation is an important
part of a successful HRI, as the robot reacts in a way expected by the user and, at the
same time, provides important feedback that makes the user feel acknowledged at
the very beginning of the interaction. Meaning that, with only this seemingly trivial
act, a good preamble to HRI is put forward.

In addition, the location of the user is an important variable in HRI. During a
human-robot conversation, the phrase “robot, come here” may be emitted by the
human. In this situation, even if the phrase was recognized correctly, the robot may
know that it needs to move, but, because the term ‘here’ lacks context, it will not
know where to move. Knowing the direction of the user in regard to the robot is an
essential variable in the estimation of the location of the user in the environment. In a
3-dimensional polar coordinate system, the horizontal angle (i.e. the direction of the
user) is one of three values that define a location (the other two being: vertical angle
and distance from origin). Using heuristics from the environment, the DOA of the
user can be used to segregate the locations where the user is most probably at. This
means that when using ASR and DOA estimation conjunctively, the aforementioned
phrase can be contextualized and stripped of its vagueness. From the user’s point of
view, only a vague command is enunciated and the robot is able to carry it out, which
is more ‘natural’ for the user than to position themselves in front of the robot.
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Unfortunately, there are many challenges in the estimation of the DOA of the
sound source. Reverberation is prevalent in the locations where a service robot is
expected to be (supermarkets, restaurants, condominiums, etc.) and has been shown
to hinder considerably the effectiveness of current DOA estimators [2]. Moreover,
too many sound sources may drown the acoustic environment, complicating the es-
timation process. A sophisticated audio capturing system may be able to overcome
these issues, such as the one proposed in [19] that used a 24-microphone 1-D ar-
ray for precision. However, the application landscape of service robots provides a
unique challenge for the multi-DOA estimation topic: a high amount of microphones
may be impractical to carry by many of the currently-in-use service robots [22, 10],
such as our in-house robot, Golem-II+, herein described.

Golem-II+ is a service robot built with a primary focus on HRI. It is integrated by
a cognitive architecture focused on HRI, termed Interaction-Oriented Cognitive Ar-
chitecture (IOCA) [13], which can take advantage of different types of information
interpreted from the world, including the direction of the user. Because Golem-II+
is a conversational robot, it is of interest that it is able to detect and carry out con-
versations with several users at any point. This implies that the system that is to
be estimating the multiple DOAs of the environment, needs to be sufficiently light
on the hardware side for the robot to carry and not hinder its mobility, but robust
enough in the software side to handle different types of noise and disturbances, as
well as simultaneous speech from various sources. Moreover, such a system should
be able to estimate the direction of the users in a -179◦– 180◦ range, as no assump-
tion can be made of the location of the users in the environment, and fast enough
to do so with small utterances from the users. It is important to note, then, that the
Multi-DOA Estimation problem is further complicated in a mobile robotic platform,
and provides an interesting and unique challenge for current techniques.

This contribution is organized as follows: Section 2 is a brief review of current
algorithms that aim to estimate the direction of one or more sound sources; Sec-
tion 3 describes the proposed system; in Section 4, the results of the evaluation of
the system on a service robot placed on a highly acoustically-complex scenario are
provided; and in Section 5, conclusions and future work are discussed.

2 Background on Source Direction-of-Arrival Estimation

Estimating a Sound Source Direction of Arrival (DOA) is a well written-about topic
in Signal Processing. It has been proven useful in applications ranging from fault
monitoring in aircrafts [19], to intricate robotic pets [6], to close-to-life insect emu-
lation [5]. In addition, the principles employed in DOA estimation have been applied
in the design of hearing aids [7].

Having two audio sensors (i.e. microphones), the Inter-aural Time Difference
(ITD) is the delay of a sound from one microphone to the other. Its calculation
is usually based on the Cross-Correlation Vector (CCV) between the two captured
signals. One of the simplest way to calculate the CCV is by applying Equation 1.
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CCV [k] =
∑i (xi−mx)(yi−k−my)√

∑i (xi−mx)2
√

∑i (yi−k−my)2
(1)

where x and y are the two discrete signals being compared; k is the point at
which y is being linearly shifted and the correlation is being calculated; mx and my
are the mean values of x and y, respectively. The ITD is the k value of the highest
correlation measure in the CCV. It is one the features most used for DOA estimation,
particularly with two-microphone arrays, as in [9] where it provided limited results.
The ITD yields a clear relation to the direction of the source, described in Equation
(2).

θ = arcsin
(

ITD ·Vsound

Fsample ·d

)
(2)

where θ is the DOA angle; IT D is the Inter-aural Time Difference in number of
samples; Vsound is the speed of sound (∼ 343 m/s); Fsample is the sampling frequency;
and d is the distance between microphones.

The Inter-aural Intensity Difference (IID) is the difference in magnitude between
both microphones and can also be used for DOA estimation, although a training
stage is usually necessary for it to be useful, as it was observed in [10].

In [2], the concept of Inter-aural Coherence (IC) is introduced, which is the high-
est correlation measure of the CCV. If a high IC is present, the signals are deemed
coherent and, thus, an analysis using ITD and/or IID can proceed. This methodology
was implemented in [6], and it was observed that it didn’t improve DOA estima-
tion when dealing with complex signals (e.g. more than one source, reverberation
present, etc.).

A popular methodology for DOA estimation in robotic platforms is to use a mi-
crophone array with, usually, two microphones, as it is proposed in [11]. The rea-
soning behind using only two microphones in robotic platforms ranges from that of
practicality (it is lightweight), to that of biological similarity [23, 3] where the robot
is meant to be the most human-like possible. However, doing so comes with four
main problems.

ITD-DOA Non-Linear Relation. In Figure 1, the DOA is plotted against the ITD,
and it can be seen that in the -50◦–50◦ range, the relation between both seem
close-to-linear. However, in the outer ranges, the relation becomes exponential. This
causes major errors when estimating angles that are located in the sides of the robot
[11]. This issue can be overcome by only estimating DOAs in the linear range, but,
as it will be described, the DOA range is already limited as it is.

Limited DOA Range. As it can also be seen in Figure 1, a 2-mic array only es-
timates DOAs in the -90◦– 90◦ range. This can be surmounted by implementing
‘artificial ears’ that can detect if the sound source is coming from the front or back
of the robot, but it has been proven impractical [16]. This can also be tackled by a
two-phase strategy: a first pair of signals can be used to estimate an initial DOA,
the robot can then rotate briefly, and then another pair of signals can be acquired
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Fig. 1 DOA (or Angle) in degrees vs. ITD (or Delay) in # of samples.

to estimate a second DOA. A comparison between the DOAs results in an angle
estimation in the -179◦– 180◦ range, but has its own set of issues: it requires con-
siderably more time than when using one DOA estimate, the required rotation may
hinder navigational requirements, and the user may be moving as well, rendering
the DOA comparison mute.

Reverberation Sensitivity. The estimation of the ITD, based on the calculation of
a CCV, can be very sensitive to reverberations and other noise sources [23](pp. 213-
215). This may result in significant errors in the DOA estimation without any form
of redundancy.

Number of Microphones. A 2-microphone array has rarely been used for multi-
DOA estimation, as it provides sparse information from the environment. Adding
more microphones generalizes the strategy, as a 2-microphone array is an instanti-
ation of classic reverse beamforming techniques [19], which create a noise map of
the environment, and then, by using metrics such as energy levels, propose possible
sources of sound and their respective DOAs. However, to obtain a high resolution
noise map, and, thus, a precise DOA estimation, beamforming techniques require
a large quantity of microphones, which is impractical for mobile robotic platforms.
In addition, the more popular 1-dimensional (1-D) beamforming methodologies are
also bounded by the first three problems described earlier, and 2-D arrays can be
cumbersome to the mobility of the robot.

The topic of how many microphones to use in a service robot is intrinsic to the
nature of the application, as it is important for the audio capture system to be mobile.
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A many-microphone solution may provide good results, such as the one proposed in
[22] where the sources were separated from each other, in order to enhance speech
recognition, and as a preamble for DOA estimation. However, it required an array
of 8 microphones positioned in a cube-like manner to work, doubling the height the
robot occupied without it.

The other side of the argument is to use one microphone, such as the work de-
scribed in [16], where the DOA of a source was able to be estimated by implement-
ing an ‘artificial ear’. Unfortunately, the sound was required to be known a priori
and any modification to the ear (even its location in relation to the microphone)
required re-training.

A popular technique is the Multiple Signal Classification algorithm (MUSIC)
[17], which is able to detect the Direction of Arrival (DOA) of as many sources as
one less the available microphones (e.g. 1 source with 2 microphones, 2 sources
with 3 microphones, etc). It does this by projecting the received signals in a DOA
subspace, based on their eigenvectors, similar to Principal Component Analysis. It
was applied in [8] with good results, although it has been observed that its perfor-
mance decreases considerably in the presence of reverberation [23] (pp. 169).

In this contribution, a technique is proposed where a small hardware system
(based on only 3 microphones) is able to estimate multiple DOAs, as much as 4
simultaneous sources.

3 Proposed System

The work carried out in [15], which, in turn, is based on the proposal presented in
[14] is the basis of the proposed system in this contribution. It is comprised by three
modules that are described extensively in the rest of this section:

1. Audio Acquisition. Obtains audio data from the microphones and provides it to
the Initial DOA Estimation module.

2. Initial DOA Estimation. Estimates, from the audio data, an initial, fast, but reli-
able DOA estimation of a single sound source in the environment.

3. Multi-DOA Tracking. Carries out dynamic clustering of the incoming DOA esti-
mations, and proposes clusters of DOAs as sound sources.

3.1 Audio Acquisition

As it will be described in the following section, the hardware is comprised by three
omnidirectional microphones, and, because the DOA estimation is based on an ITD
measure, it requires that the audio from the three microphones be acquired simul-
taneously as well as in real-time. For this purpose, the JACK Audio Connection
Toolkit [1] was employed, as it can sample at rates of 44.1 kHz and 48 kHz, provid-
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ing a good resolution for ITD calculations, and it does so without slowing down the
other robotic software modules.

3.2 Initial DOA Estimation

The Initial DOA Estimation is carried out by the technique described in [14]. It
avoids the problems that arise when estimating a DOA using 1-D microphones ar-
rays (described in Section 2), and maintains a relatively small hardware setup: an
equilaterial-triangular-array, as it is shown in Figure 2. To this effect, the system
obtains a set of 3 simultaneous sample windows.

Fig. 2 Hardware setup of the
proposed system. L R

F
Speaker

The audio data is passed through various serialized sub-modules: a band-pass
filter, a Voice Activity Detection stage, multi-ITD estimation, a redundancy check,
and, finally, a final DOA estimation. The flow of data is summarized in Figure 3.

Fig. 3 Initial DOA Estimation flow of data.
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3.2.1 Band-Pass Filter

A general infinite impulse response band-pass filter is used at the beginning of the
process, to remove general ambient noise that is outside the human speech frequency
bands. The filter model is described in Equation (3):

yn = 0.0348 · xn−0.0696 · xn−2 +0.0348 · xn−4

+3.2680 · yn−1−4.1247 · yn−2 +2.3984 · yn−3−0.5466 · yn−4 (3)

where yi is the output of the filter, xi is the input, and n is the number of the
current sample.

It was observed that this filter made the system less sensitive towards unwanted
noises that should always be ignored, such as high-pitch sounds, microphone hiss,
etc. Concurrently, it did not degrate the sensitivity of the system towards human
speech.

3.2.2 Voice Activity Detection

To trigger the ITD estimation described in the next section, Voice Activity Detec-
tion (VAD) needs to be carried out. Because the robotic platform may be changing
position and environments, the VAD system is required to adjust to such changes
automatically. To this effect, a simple VAD algorithm is proposed that is based on
adjusting the baseline of the environmental noise to any sound that is emitted with
a pre-specified delay.

Two history buffers of sample window energy values are kept in memory and
shifted based on the specified delay (2 seconds provided good results). One is al-
ways being refreshed by new sample window energy values (avg buffer), and is
used to calculate the current average energy value (avg value). The other buffer
(min buffer) is used to calculate the current average minimum value (min value),
and is refreshed with a new energy value if it is less than the current min value
or if the difference between it and avg value is less than the difference between
avg value and min value (which would mean that its value is close to the values of
min buffer).

The VAD is triggered if the energy value of the current sample window is greater
than the average between avg value and min value by a multiplicative threshold (1.5
provided good results).

3.2.3 Multi-ITD Estimation, Redundancy Check, & Angle Calculation

Once the VAD is triggered, the Multi-ITD Estimation follows. Three possible ITDs
can be calculated using cross-correlation between sample window R and L (IRL), L
and F (ILF ), and F and R (IFR). 2 DOAs are calculated from each ITD: one using



Multi-DOA Estimation for a Mobile Robotic Platform with Small Hardware Setup 9

Equation (2), and another shifting the first DOA to its possible counterpart on the
‘backside’ of the microphone pair.

The three DOA pairs are used to check if the three ITDs are from a sound source
located in the same angle sector. To do this, the average of the differences between
the DOA pairs is calculated using Equation (4).

Cpqr =
|Dp

RL−Dq
LF |+ |D

q
LF −Dr

FR|+ |Dr
FR−Dp

RL|
3

(4)

where a Di
xy is the ith DOA of the DOA pair from Ixy. A set of 8 Cpqr are calcu-

lated, where p, q, and r can be either 0 or 1, depending on which DOA of the DOA
pair is being compared. Of the 8, the minimum is considered as the incoherence of
the sample window set. As it can be seen in Figure 4a there is no combination of p,
q, and r DOAs that provide low incoherence, while in Figure 4b, the combination
p = q = r = 1 provides good coherence, all three pointing towards the source.

L R

F

Speaker

q=1

q=0
p=1

p=0

r=1 r=0

L R

F

Speaker
q=1

q=0

p=1

p=0

r=1

r=0

(a) (b)

Fig. 4 a) A highly incoherent ITD set. b) A coherent ITD set (p = q = r = 1).

A pre-specified incoherence threshold (measured in degrees of separation be-
tween the DOAs; a value between 30◦ and 40◦ provided good results) is used to
reject sample window sets. A high incoherence implies that the sample window set
either has too much reverberation to be trustworthy for further processing or that
it contains more than one sound source. This rejection step serves as a type of
redundancy check per sampling window set.

If all of the DOAs are coherent/redundant with each other, a preliminary DOA
value (θm) can be calculated using Equation (5),

θm = arcsin
(

Imin ·Vsound

Fsample ·d

)
(5)

where Imin is the ITD with the lowest absolute value of the three (IRL, ILF , IFR).
θm is then shifted to the appropriate angle sector in relation to the orientation of the
robot, resulting in the final DOA value (θ ).

Using Imin ensures that θm is calculated from the microphone pair that is the most
perpendicular to the source. This means that the resulting θ is always estimated
using a θm inside the -30◦– 30◦ range (well within the close-to-linear -50◦– 50◦

range), because of the equilateral nature of the triangular array. Meaning that all
through the -179◦– 180◦ range, there is always a close-to-linear ITD-DOA relation.



10 Caleb Rascon and Luis Pineda

Because of both the redundancy check and the close-to-linear relation, the maxi-
mum error of this system can be known beforehand using Equation (6).

|error◦max|= arcsin
(

I>30◦ ·Vsound

Fsample ·d

)
−arcsin

(
I<30◦ ·Vsound

Fsample ·d

)
(6)

where I>30◦ and I<30◦ are the ITDs that provide the closest ceil and floor mea-
surements, respectively, to 30◦. For example, sampling at 44.1 kHz and with the mi-
crophones spaced at 18 cm, a maximum error of ±2.8747◦ can be expected. In the
same set of circumstances, when using a 2-Mic 1-D array, the maximum expected
error, which occurs when the sound source is close to either side of the robot, is of
±15.0548◦.

3.3 Multi-DOA Tracking

The DOA estimator described in the previous section only provides results when
there is considerable confidence of only one sound source being detected in a small
sample window (up to 100 ms). Although, it has been shown that people tend to not
talk over each other while in conversation [21], even in simultaneous-speech, it has
been seen that users are not expected to talk with a 100% overlap over each other.
In fact, when analyzing speech recognition, ‘spurts’ of non-overlapping speech has
been considered to the order of 500 ms [18]. For example, in Figure 5, it can be seen
how two randomly chosen tracks from the DIMEX corpus [12], when overlayed
over each other, still have some portions with no overlap between them.

Fig. 5 Non-overlapping si-
multaneous speech.

This means that the DOA estimator described in the last section is able to provide
reliable results of single sources even in multi-user scenarios. However, because of
the stochastic nature of the presence of single user sample windows in the simulta-
neous audio timeline, such results would be provided in a sporadic fashion. To this
effect, a simple tracking system is proposed that dynamically clusters similar DOAs
into candidate sound sources.
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The tracker maintains in memory the last DOAs provided by the initial DOA
estimator in a specific time frame. When a new DOA is estimated, the tracker carries
out the following:

1. If the new DOA is not ‘close enough’ to the average DOA of any current cluster
(good results were obtained when using 5◦ for clusters with one DOA, 10◦ for
clusters with more than one DOA, as thresholds for closeness), or there are no
clusters in the environment: create a new cluster with the new DOA.

2. If it is close enough to a current cluster, add the new DOA to it, and re-calculate
its new average DOA.

If a DOA is too old (an age of 10 seconds provided good results), it is ‘forgotten’
by removing it from its respective cluster and re-calculating its average DOA.

Every cluster is considered a candidate sound source, until it has a pre-specified
number of DOAs attributed to it (2 DOAs provided good and fast results), when it
becomes a ‘sound source’ and its average DOA becomes its main estimated DOA.

4 Trials & Results

The test scenario was as follows: three microphones, 20 cm. apart from each other,
were installed in the upper base of the Golem-II+ robot. In turn, it was placed in
a large room with a high sonic complexity (considerably reflective materials, with
a low ceiling, hard floor, cement columns in the middle, and moderate reverber-
ation). Two electronic speakers emitting, simultaneously, random recordings from
the DIMEX corpus [12] for 20 seconds, were placed at 1.5 meters from the robot,
one at 0◦, another at -45◦.

The Audio Acquisition module was sampling at 48 kHz, and providing sample
windows of 4800 samples (100 ms). The buffers in the VAD were 10 energy values
long, and considering a 2 second delay for adjustment to the environment noise.
The DOA estimator had a 40◦ incoherence threshold (any sample window set with
a higher incoherence was rejected). The multi-DOA tracker considered a new DOA
as part of a cluster with more than one DOA if it was 10◦ or closer to its average
DOA; if the cluster only had one DOA, 5◦ or closer was considered as part of the
cluster. The results of the test are shown in Figure 6.

As it can be seen, the tracking system performed well with 2 sound sources (in
the Figure referred to as ‘Users’).

The system was then tested with an additional simultaneous source: a human
emitting continuously the phrase “golem i am over here (pause)” placed at 35◦. The
results of this scenario are shown in Figure 7.

As it can be seen, the system tracked the human and one of the electronic speakers
(placed at -45◦) well. The other of the two electronic speakers (placed at 0◦) was
‘missed’ for a moderate amount of time, however, in any other moment, the tracking
system was able to track it considerably well.
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Fig. 6 Tracking 2 simultaneous sources (2 electronic speakers).
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Fig. 7 Tracking 3 simultaneous sources (2 electronic speakers, 1 human).

To assess if the ‘missed’ tracking issue was with the electronic speaker itself, and,
in addition, to observe if the tracker is able to better identify humans than electronic
speakers, an additional simultaneous source was added to the environment: another
human emitting continuously the phrase “one two three (pause)” placed at -100◦.
The results of this final scenario are shown in Figure 8.
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Fig. 8 Tracking 4 simultaneous sources (2 electronic speakers, 2 humans).

And, as it can be seen, the electronic speaker placed at 0◦ was again ‘missed’
in a similar fashion than in the 3-user scenario, which suggests a failure with the
specific characteristics of the electronic speaker (positioning, volume, frequency
enveloping of speech, etc.). However, both humans were tracked very well, and the
electronic speaker placed at -45◦ was tracked relatively well. These results imply
that the proposed system is well suited for tracking simultaneous human speech.

In addition, and more significantly, for a moderate amount of time, the 4 simulta-
neous sources were being tracked well. Considering that the system only employs 3
microphones, it showed that it was able to monitor more sources than the number of
microphones present, a feat that the popular approach known as MUSIC is unable to
accomplish [17]. In fact, the number of sources that can be simultaneously tracked
by the proposed system may not have a theoretical boundary, as speech overlap is
the primary limiter, and, as previously stated, people do not tend to interrupt each
other [21]. However, further testing is required to explore this topic.

The authors would like to remind the reader that the setting of the test scenario
were considerably harsh: the sonic complexity of the room was high, there was mod-
erate reverberation, the human user placement can be expected to be inconsistent,
and no reverb adequation was carried out. When considering all of this, the pro-
posed system has shown it is an adequate solution to the multi-user DOA estimation
problem in a robotic mobile platform.
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5 Conclusion & Future Work

Human-Robot Interaction benefits from a rich perception of the world. Having the
robot orient itself towards the user during a conversation enhances HRI from the
point of view of both the user and the robot: the ‘naturality’ of the conversation is
improved, and the acquisition of more information from the user (face recognition,
voice context, etc.) is simplified. To do this, however, the direction of the user is
required. Because a conversation is carried out via voice, it is appropriate that the
direction of the user be estimated by sound analysis.

In addition, multi-user scenarios are common in the day-to-day dynamics of a
service robot. However, the multi-DOA estimation problem is further complicated
when applied in mobile robotics, as it presents a unique challenge: the mobility
of the robot should not be compromised, thus the hardware should be small and
lightweight (limited amount of microphones), but it should be robust and flexible
enough to be able to carry out DOA estimation in acoustically complex settings.

In this contribution, a 3-microphone system was proposed, built upon earlier
work published by the authors. It provides a reliable Multiple Direction-of-Arrival
estimation, and it was shown that it was able to track more users than the amount
of microphones used. Moreover, it did so while being light enough to be carried
by a service robot. It also provided a robust estimation in the presence of moderate
reverberation and high sonic complexity.

However, during the evaluation, were human speech and electronic-speakers
were emitting simultaneously, it was observed that the human speech overcame the
electronic speakers. Although this might be attributed to specific characteristics of
the hardware, it was observed that human speech was consistently tracked well,
which is something desirable as it will be employed with real-life human speech.

This system is planned to be a preamble for a consequent module that will per-
form online source separation based on the DOA of the source, which will then
provide the Automatic Speech Recognizer with speech data. This will result in a
multiple-simultaenous-speech recognition, with a small hardware setup and redun-
dant estimation.
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