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Bidirectional Associative Memories: Unsupervised
Hebbian Learning to Bidirectional Backpropagation
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Abstract—Bidirectional associative memories (BAMs) pass
neural signals forward and backward through the same web of
synapses. Earlier BAMs had no hidden neurons and did not use
supervised learning. They tuned their synaptic weights with unsu-
pervised Hebbian or competitive learning. Two-layer feedback
BAMs always converge to fixed-point equilibria for threshold or
threshold-like neurons. Every rectangular connection matrix is
bidirectionally stable. These simpler BAMs extend to arbitrary
hidden layers with supervised learning if the resulting bidirec-
tional backpropagation algorithm uses the proper layer likelihood
in the forward and backward directions. Bidirectional backprop-
agation lets users run deep classifiers and regressors in reverse
as well as forward. Bidirectional training exploits pattern and
synaptic information that forward-only running ignores.

Index Terms—Bidirectional associative memory (BAM), bidi-
rectional backpropagation, global stability, Hebbian learning.

I. BIDIRECTIONAL ASSOCIATIVE MEMORIES

EVERY real matrix is bidirectionally stable. That matrix
theorem holds for two-layer feedback networks so long

as the layers have threshold or threshold-like neurons [1].
The feedback network always converges to a bidirectional
fixed point subject to minimal conditions on how and when
the neurons fire. The result is a bidirectional associative
memory (BAM).

This article reviews such BAMs and shows how they extend
to the modern probabilistic case of supervised deep learning
with bidirectional backpropagation. Fig. 1 compares an older
2-layer unsupervised BAM with a new deep supervised BAM
when both networks try to represent a permutation mapping
and its inverse. Fig. 2 shows the basic BAM theorem at work
as a 2-layer BAM converges rapidly and asynchronously to a
bidirectional fixed-point equilibrium.

Fig. 3 shows that the new supervised bidirectional backprop-
agation algorithm [2] can train a multilayer network forwards
and backwards without overwriting the training in the opposite
direction. The plots show the training iterations that produced
the 3-layer logistic BAM in Fig. 1(b). Fig. 4 shows that a
deep neural classifier can run in reverse to advantage if it
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trains with bidirectional backpropagation and the proper layer
likelihood. Running an ordinary deep classifier in reverse pro-
duces only noise at the input. Running the same classifier in
reverse after proper BAM training produces the input pattern
that the network expects to see given its training and the cur-
rent stimulation. This reverse or top-down signal approximates
the centroid of the sampled pattern class. This bidirectional
training also tends to improve classification accuracy in deep
convolutional classifiers and adversarial networks [3]. It also
trained the 3-layer BAM in Fig. 1.

The BAM memory matrix M is the n-by-p weight matrix
that connects the two fields of neurons of a 2-layer BAM.
Neural signals flow forward from the input neural layer FX

through M. Then neural signals flow backward from the output
neural layer FY through the matrix transpose MT. Both fields
use the same web of synapses. Any other 2-layer bidirectional
network must use two distinct synaptic weight matrices M
and N. It must use M in the forward direction and some p-
by-n matrix N in the backward direction that differs from MT.
BAMs are minimal heteroassociators in this sense that they
use the same matrix in both directions.

Hidden layers of neurons can change a BAM’s structure.
The hidden layers can help the BAM store and recall more
patterns. They can also undermine its feedback stability. A
properly trained deep BAM can represent and approximate
far more functions than can a 2-layer BAM. But the two-layer
BAM matrix theorem may no longer hold.

The two BAMs in Fig. 1 show how a single hidden layer
can boost a network’s approximation power. Both BAMs try
to learn the 4-bit permutation mapping π in Table I and its
inverse π−1. The task is to produce a BAM that maps a bipolar
vector Xk at the input layer to the corresponding output bipolar
vector Yk over the same web of synapses that maps Yk back
to Xk. So X1 = (−1 − 1 − 1 − 1

)
must map to Y1 =(

1 1 − 1 − 1
)
. Representing the inverse map π−1 requires

that Y1 map back to X1. Such bidirectional recall must hold
for all 16 paired associations in Table I.

The first panel of Fig. 1 shows a classical 2-layer threshold
BAM trained with unsupervised Hebbian learning. It cannot
learn all 16 associations in its correlation matrix M in (18).
Extensive simulations found that such a BAM can encode at
most eight of the bipolar vector associations from Table I.
The 2-layer BAM simply lacks the power to represent or
approximate most functions. The much larger 2-layer BAM
in Fig. 2 does easily store and recall three paired associations
with Hebbian learning because the number of neurons in each
field greatly exceeds the number of stored patterns.
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(a) (b)

Fig. 1. Bidirectional approximation and representation of the permutation function π in Table I and its inverse π−1. (a) 2-layer BAM with no hidden units.
Its correlation memory matrix M in (18) can accurately store and recall only 8 of the 16 vector associations as BAM fixed-point equilibria. Those learned
associations are the first eight listed in Table I. (b) 3-layer BAM exactly represents the 4-bit bipolar permutation function π and its inverse π−1 over the same
web of synapses because it trained with supervised bidirectional backpropagation. A 3-layer BAM with 2n hidden threshold neurons can exactly represent
any n-bit permutation and its inverse [2].

The second panel in Fig. 1 shows a 3-layer BAM trained
with bidirectional backpropagation. This 3-layer BAM encodes
the entire permutation mapping in Table I and its inverse
mapping. It achieves this bidirectional mapping feat at the
cost of using hidden threshold (steep logistic) neurons. It
also trains with the far more computationally heavy bidirec-
tional backpropagation learning algorithm [2], [3]. It turns out
that a 3-layer threshold BAM with 2n hidden neurons can
exactly represent any n-bit permutation mapping. So bidirec-
tional backpropagation here reduced the needed number of
hidden neurons from 16 to 5. The final section shows how
bidirectional backpropagation uses the BAM’s global likeli-
hood structure to solve the problem of how to train synapses
in one direction without overwriting their prior training in the
reverse direction.

BAMs can also combine the rapid convergence of unsu-
pervised two-layer BAMs with supervised multilayer BAMs.
Simple 2-layer BAMs can pretrain the contiguous layers of
a deep network with unsupervised learning. These simple
BAMs correspond to restricted Boltzmann machine networks
in this pretraining context [4]. The statistical version of such
Boltzmann-machine pretraining turns out to be a special case
of the generalized expectation–maximization (EM) algorithm
for maximum-likelihood estimation [5]. The ABAM theorem
below shows that this convergence of this adaptive system is
deterministic and requires no statistical interpretation.

The next sections present a more general form of the dis-
crete BAM theorem and review the continuous version of the
adaptive BAM theorem for unsupervised Hebbian or com-
petitive learning. The final section shows how bidirectional

TABLE I
4-BIT BIPOLAR PERMUTATION FUNCTION (SELF-BIJECTION) π AND

ITS INVERSE π−1 THAT THE 3-LAYER BAM NETWORK REPRESENTS

EXACTLY IN FIG. 1(b). THE INVERSE π−1 MAPS THE OUTPUT y
BACK TO THE CORRESPONDING INPUT x

backpropagation can train a deep classifier or regressor by
exploiting the probabilistic structure of each neural layer in
the forward and backward directions.

II. BAM GLOBAL STABILITY

A Lyapunov argument shows that every 2-layer BAM is
globally stable. The discrete case differs from the continuous
case both in terms of the BAM system Lyapunov function
and in terms of the update strategy. We first present the dis-
crete case in some detail. The next section shows how stability
applies in the continuous and more general case when unsu-
pervised learning laws update the memory matrix while the
neurons change. The proof technique is similar. Some forms of
BAM stability can still hold for neural signals with time delays
that can model the transmission times of axonal signals [6].
Other BAM models with time delays ensure solutions with
periodic oscillations [7].
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Global stability shows that a 2-layer BAM system converges
to a BAM fixed-point attractor. So such BAMs avoid com-
plex periodic equilibria. Nor do they wander chaotically in the
state space. But global stability does not show which attractor
the BAM converges to. The result is akin to knowing that an
airplane will land at an airport but not knowing which airport.

Discrete BAM stability involves a back-and-forth conver-
gence path from an initial input state vector A to a final
fixed-point attractor (Af , Bf ). The input state A passes forward
through the memory matrix M. The nonlinear operations at the
output layer produce the output state vector B. The state vec-
tors A and B are binary or bipolar vectors in practice. The
output state vector B feeds back through the transpose matrix
MT and leads to the new input state vector A′. Input A′ feeds
forward through M and leads to the new output state vector
B′. This pendulum-like process continues until the fixed input
vector Af produces the fixed output Bf and conversely. Then
the vector pair (Af , Bf ) defines a BAM fixed-point equilib-
rium. The next section shows that a BAM always (and rapidly)
converges to a BAM fixed-point equilibrium for threshold or
threshold-like neurons for any connection matrix M. The result
holds whether all neurons in a field update at once or if a
random subset updates asynchronously.

A. Discrete BAM Stability

A discrete BAM can update its neurons in almost arbitrary
fashion and still ensure global stability to a BAM fixed-
point attractor. Such updates can only decrease the bounded
Lyapunov function. The stability result holds for any synaptic
weight matrix M because the bidirectional operation in effect
symmetrizes the rectangular matrix M into a 2-by-2 block
matrix with null diagonal blocks and with M and MT as the
off-diagonal blocks.

A problem can arise if the forward and backward updates
occur at the same time. Then the Lyapunov function can
increase in some cases. This problem does not arise in practice
since users update BAM neurons in one direction at a time. It
does not arise at all in continuous BAMs. It can arise in the
special case of a discrete Hopfield network if the user updates
all neurons at the same time [8], [9].

The original stability theorem for discrete BAMs assumed
that the neurons were on–off threshold neurons. The proof
showed that the inner-product input to an updated neuron had
the same sign as the update had. So the product of both signs
was positive. Changes in the global energy or the Lyapunov
function just summed the negative of these positive terms.
The network converged to a bidirectional fixed point when the
energy function reached a lower bound. This stepwise decrease
was not trivial because the threshold state changes ensured a
minimal downward step size. We here extend this theorem to
allow steep sigmoid functions such as logistics to approximate
the thresholds. The same proof goes through if we assume that
there remains a minimal downward step size in the energy
function.

The 2-layer BAM consists of n threshold or threshold-like
neurons in the X field and p such neurons in the Y field. The
arbitrary n-by-p matrix M connects the input neuron field FX

to the output field FY . The output field FY can be a hidden
layer in more general mutlilayer BAMs. The fields FX and FY

can also have fixed self-connections or intrafield connections
so long as the corresponding n-by-n and p-by-p connection
matrices are symmetric. We assume for simplicity that they
are null matrices. We also here ignore exogenous inputs to
the neurons without any loss of generality. The section on
continuous neurons below restores these external inputs.

The following activation notation describes the BAM
network operations. The ith neuron in FX converts the inner-
product input ox

i to the input sigmoidal activation ax
i (o

x
i ). Let

aX(t) denote the row vector of input FX neurons at time t:
aX(t) = (ax

1(t), . . . , ax
n(t)). The stand-alone activation ax

i also
implies at a given time that it receives input ox

i : ax
i = ax

i (o
x
i ).

Let aY likewise denote the row vector of p output (or hidden)
neural activations in the field FY : aY = (ay

1(o
y
1), . . . , ay

p(o
y
p)).

The memory matrix value mij of M denotes the directed
synaptic path from the ith neuron in FX to the jth neuron
in FY .

The default activation ay
j is a steep binary or bipolar logistic

function of its argument oy
j . The binary activation has the form

ay
j (o

y
j ) = 1

1 + exp(−c oy
j )

(1)

= 1

1 + exp(−c
∑n

i=1 ax
i mij)

(2)

for inner-product input

oy
j =

n∑

i=1

ax
i mij (3)

and for steepness parameter c > 0. Values c ≥ 5 produce de
facto binary threshold functions. But the logistic activation has
a simple and smooth derivative

∂ay
j

∂oy
j

= c ay
j (1 − ay

j ). (4)

The activation ay
j can also be a classical binary threshold

with threshold Tj

ay
j (o

y
j ) =

{
1 if oy

j > Tj

0 if oy
j < Tj.

(5)

The jth neuron does not change state if oy
j = Tj (or the neuron

can randomly break the tie). This allows asynchronous updates
because then a neuron need not make an update decision at a
given time t even if the inner-product input oy

j exceeds or falls
below the threshold Tj. The threshold neuron simply maintains
its current on-or-off status in such cases.

The output activation vector aY of p logistic val-
ues defines a point in the p-dimensional unit hypercube
Ip = [0, 1]p : aY ∈ Ip. So the output state vector aY defines
a finite fuzzy set [10], [11]. Its time evolution defines a
sequence of p-dimensional fuzzy sets in the unit p-cube. The
bipolar logistic activation by

j scales and translates the corre-
sponding binary activation ay

j to a value in the bipolar interval
[−1, 1]: by

j = 2ay
j − 1. Then the bipolar state vector bY is a

point in the p-dimensional bipolar cube [−1, 1]p.
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The network energy or Lyapunov function E has a forward-
pass component Ef and a backward-pass component Eb.
The energy has the sum form E = Ef + Eb. We will
see below that bidirectional backpropagation has a sim-
ilar summed-error structure because of the log-likelihood
structure that arises from the joint bidirectional likelihood:
ln p(y|x, M)p(x|y, M) = ln p(y|x, M) + ln p(x|y, M). This is
the key insight in deriving the bidirectional backpropagation
algorithm [2].

The directional energy E itself is just a smooth function
of the system coordinates x1, . . . , xn and y1, . . . , yp. A simple
Taylor’s series expansion gives the energy as a quadratic form
since the first-order condition for an extremum is that all first
partial derivatives equal zero [9]. This gives the forward-pass
energy Ef as the scaled quadratic form Ef = Ef (aX, aY |M) =
−(1/2)aXM(aY)T. The backward-pass energy Eb has likewise
a quadratic form: Eb = −(1/2)aY MT(aX)T. Taking the trans-
pose shows that these two energies are equal because the trans-
pose of a scalar is just the scalar: Eb = −(1/2)aY MT(aX)T =
(−(1/2)aY MT(aX)T)T = −(1/2)aXM(aY)T = Ef for any
matrix M. Then the total energy of the 2-layer BAM equals
the unscaled quadratic form

E = Ef + Eb = −1

2
aXM

(
aY)T − 1

2
aYMT(

aX)T
(6)

= −aXM
(
aY)T

(7)

= −
n∑

i=1

p∑

j=1

ax
i ay

j mij. (8)

So the BAM energy is just the unweighted average of the
forward and backward energies. The absolute matrix entries
|mij| give a finite lower (and upper) bound on the total BAM
energy E

E
(
aX, aY |M) ≥ −

n∑

i=1

p∑

j=1

∣∣mij
∣∣. (9)

The proof of the basic discrete BAM theorem shows that
any activation state change �ax

i or �ay
j in either direction

must decrease the energy E. So �E < 0 holds along BAM
state trajectories.

Discrete BAM Theorem: Every connection matrix M is bidi-
rectionally stable for threshold or threshold-like neurons and
for asynchronous or synchronous state updates.

Proof: Consider a forward pass from the input neural field
FX to the output or hidden neural field FY . Assume that at least
one output neuron changes state from time t to the current time
t + 1: |�ay

j (t + 1)| = |ay
j (t + 1) − ay

j (t)| > 0. Then the update
vector �aY(t + 1) = (�ay

1(t + 1), . . . ,�ay
p(t + 1)) is not the

null vector. So the updates at FY at time t +1 can involve any
of the 2p − 1 asynchronous or random update choices of the
p output neurons.

We assume that the jth neuron in FY has a binary thresh-
old activation as in (5). This involves no loss of generality
because the convergence argument uses only the sign of
�ay

j (t + 1). We do assume that the logistic activation (1) or
any other smooth sigmoid activation is sufficiently steep so
that discrete state changes are not trivially small. We also

assume for simplicity that all threshold neurons have zero
thresholds: Tj = 0 in (5). Then either �ay

j (t + 1) = 1 or
�ay

j (t + 1) = −1 holds. This exclusive-or disjunction holds
because the nonzero state change �ay

j (t + 1) �= 0 implies
that either �ay

j (t + 1) = ay
j (t + 1) − ay

j (t) = 1 − 0 = 1 or
�ay

j (t + 1) = ay
j (t + 1) − ay

j (t) = 0 − 1 = −1 holds. The
nonzero state change �ay

j (t + 1) �= 0 for a logistic activation
likewise implies that either �ay

j (t + 1) > 0 for an activation
increase or �ay

j (t + 1) < 0 for an activation decrease.
Consider first the change in the BAM energy �E for a

forward pass. Put �E(t + 1) = E(t + 1) − E(t). Then the
threshold update in (5) can only decrease the energy on the
forward pass if �ay

j (t + 1) �= 0 for at least one output neuron

�E(t + 1) = −aX(t)M
(
�aY(t + 1)

)T
(10)

= −
p∑

j=1

( n∑

i=1

ax
i (t)mij

)
�ay

j (t + 1) (11)

< 0 (12)

because sign(�ay
j (t+1)) = sign(

∑n
i=1 ax

i (t)mij) from (5). The
sum over the p output neurons shows that �E < 0 holds along
trajectories for the synchronous update of all output neurons
or for any non-null asynchronous update choice of FY neurons
because the sign equality holds for every output neuron such
that �ay

j (t + 1) �= 0.
The same argument holds for the backward-sweep update

epoch. Then the output activation state vector �aY(t + 1)

passes through the transpose MT. Assume that it updates at
least one input neuron so that �ax

i (t + 1) �= 0 holds

�E(t + 1) = −aY(t + 1)MT(
�aX(t + 1)

)T
(13)

= −
n∑

i=1

( p∑

j=1

ay
j (t + 1)mij

)
�ax

i (t + 1) (14)

< 0 (15)

because sign(�ax
i (t + 1)) = sign(

∑p
j=1 ay

j (t + 1)mij). The
backward update sweep follows the forward update sweep.
So synchronous or asynchronous updates at one field cannot
interfere with updates at the other. So the bounded energy E
decreases along trajectories: �E < 0.

The proof shows that we can weaken the assumption that
each neuron update strictly decreases the energy in a forward
or a backward sweep. The total energy inequality �E < 0
requires only that the negative neuron updates in one field
outweigh the positive updates in that field. So requiring only
net-negative updates allows mild forms of random or noisy
update schemes. We can further weaken the assumption and
allow simultaneous updates in both fields so long as the total
number of negative neuron updates outweighs the total number
of positive updates at discrete-time increment t. We can still
further weaken the assumption by allowing nonmontonic acti-
vation functions such as Gaussians so long as the sigmoidal
updates swamp them in the final update tally.

The next section shows how this basic BAM global stability
extends to the more complex case where synaptic learning
takes place while the neurons at FX and FY change as well. The
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results hold for the general class of Cohen–Grossberg neural
models that include the important special cases of additive and
shunting neural dynamics [12].

III. ADAPTIVE BAM THEOREMS

A natural question is whether the memory matrix M itself
can change slightly and still preserve BAM stability as the
neurons update. The fact that every matrix M is bidirection-
ally stable suggests that this should hold for at least slight
perturbations of the matrix elements mij.

Any change to the memory matrix M is a form of learn-
ing. Learning in a feedback system risks instability because
changing the synaptic values in M can undermine the stability
of the two neural fields FX and FY . Changing the neural fields
also risks destabilizing learning. Neural stability itself corre-
sponds to pattern formation. The final snapshot of Fig. 2 shows
this with the stable recall of the (S, E) association. So pattern
learning should make just those changes to M that allow it to
encode new neural patterns at FX and FY

Pattern learning creates a stability–plasticity dilemma for
learning in any feedback system. The synaptic values in M
must be plastic enough so that changes encode the neural pat-
terns that play out across the connected neural fields. But the
synaptic values in M cannot change so much that they undo
the stable neural patterns that the synaptic values try to encode.

The next section develops a discrete adaptive BAM theorem
that balances both horns of the stability–plasticity dilemma
with unsupervised Hebbian learning. The result extends to
the continuous case. It also opens the way to supervised
bidirectional backpropagation in the multilayer case.

A. Hebbian Correlation Matrix Learning

A simple way to update M is also one of the oldest: just add
up outer-product correlation matrices [13], [14]. The resulting
memory matrix M can encode only a small number of pattern
associations as BAM fixed-point equilibria as in Fig. 1(a) or
Fig. 2.

Such correlation encoding gives insight into why these
correlation BAM matrices lead to accurate pattern recall
if the number m of associations is small. It also suggests
unsupervised learning laws that extend BAM stability.

A BAM correlation memory matrix M encodes m
bipolar vector associations (Xj, Yj). The discrete (offline)
learning processing starts with m bipolar associations
(X1, Y1), . . . , (Xm, Ym) for bipolar row vectors Xj ∈ {−1, 1}n

and Yj ∈ {−1, 1}p. Encode the jth association (Xj, Yj) in the n-
by-p bipolar outer-product matrix Mj = XT

j Yj. Then encode all
m associations as the sum of the m outer-product matrices Mj

M =
m∑

j=1

Mj =
m∑

j=1

XT
j Yj. (16)

This simple correlation form of distributed learning shows
how to erase or forget the jth association: just subtract Mj from
M. The matrix −Mj associates the stimulus or if-part vector Xj

with the response or then-part complement Yc
j since Yc

j = −Yj

for bipolar vectors. Binary vector associations (Aj, Bj) admit

Fig. 2. Asynchronous recall in a discrete Hebbian BAM with two layers of
threshold neurons. A 40% noise-corrupted version of the association (S, E)

stimulated the BAM as an input. The network updated six neurons at random
per field on its way to convergence to the BAM fixed-point equilibrium (S, E).
The input field FX had 140 threshold neurons. The output field FY had 108
threshold neurons. The 140-by-108 memory matrix M summed three bipolar
outer-product matrices to encode the three associative patterns (S, E), (M, V),
and (G, N).

bipolar encoding through the transformations Xj = 2Aj −I and
Yj = 2Bj −I if I is the respective n-vector or p-vector of all 1s.

Correlation encoding is a type of unsupervised Hebbian
learning in the product sense that neurons that fire together
wire together [9]. It likewise creates a BAM memory matrix
M that accurately stores and recalls only a few associations
(Xj, Yj) as BAM fixed points.

The BAM memory matrix in Fig. 1(a) stores eight bipo-
lar associations from the bipolar 4-bit permutation map π in
Table I. The permutation map π : {−1, 1}4 → {−1, 1}4 is just
one of the 16! or 20, 922, 789, 888, 000 such 4-bit bipolar per-
mutations. Each permutation map is one-to-one and onto. So
the inverse π−1 exists. It just maps the 4-bit string on the right
back to the corresponding 4-bit string on the left.

Extensive simulations showed that the correlation tech-
nique (16) can store and recall at most 8 of the 16 vector
associations in permutation mapping π in Table I. These
eight associations correspond to the first eight entries of
Table I. The first associative pair is (X1, Y1) with X1 =(−1 − 1 − 1 − 1

)
and Y1 = (

1 1 − 1 − 1
)
. This gives

the first outer-product memory matrix M1 as

M1 = XT
1 Y1 =

⎛

⎜⎜
⎝

−1 −1 1 1
−1 −1 1 1
−1 −1 1 1
−1 −1 1 1

⎞

⎟⎟
⎠. (17)
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The other seven matrices likewise give 4-by-4 bipolar matrices.
Then the final BAM memory matrix M sums these first eight
outer-product matrices

M =
8∑

j=1

XT
j Yj =

⎛

⎜⎜
⎝

−8 −4 0 0
−4 −8 −4 4
−4 0 4 4
−4 0 4 −4

⎞

⎟⎟
⎠. (18)

The BAM matrix M in (18) recalls the first eight associ-
ations (Xj, Yj) in Table I as reverberating bidirectional fixed
points. Consider the synchronous update with zero thresh-
old when X1 passes through M: X1M = (20, 12,−4,−4) →
(1, 1,−1,−1) = Y1. Thresholding the backward pass of
Y1 through MT gives Y1MT = (−12,−12,−12,−4) →
(−1,−1,−1,−1) = X1. So the pair (X1, Y1) reverberates
in perpetuity until an external stimulus perturbs the system.
Slight perturbations to these vectors still converge to the
same bidirectional fixed-point equilibrium. Another exam-
ple is the 7th pair (X7, Y7) with X7 = (1, 1, 1,−1) and
Y7 = (−1,−1,−1, 1). Then the forward pass gives X7M =
(−12,−12,−4, 12) → (−1,−1,−1, 1) = Y7. The backward
pass gives Y7MT = (12, 20, 4,−4) → (1, 1, 1,−1) = X7. So
the pair (X7, Y7) is also a BAM fixed point.

B. Hebbian Correlation Decoding

This section shows why correlation BAMs tend to recall the
correct learned association if the number m of stored associ-
ations is small relative to the input and output dimensions n
and p: m < min(n, p). The argument uses only the structure
of bipolar and binary vector spaces and simple assumptions
about the distribution of 1s in a vector and the similarity of
metrics. It does not use BAM feedback stability directly. It
shows instead that correlation learning increases the probabil-
ity that threshold decoding will select the appropriate vector
at each iteration on the path toward BAM convergence. The
argument further shows that bipolar inputs Xk produce more
accurate recall on average than do binary inputs Ak.

The analysis starts with the correlation coefficient cij

cij = Xi · Xj = XiX
T
j (19)

where Xi · Xj denotes the ordinary inner product of two finite
vectors. The correlation coefficient cij is an integer that lies in
the range −n ≤ cij ≤ n. It scales an output bipolar vector Yk

in associative recall from a correlation matrix M as in (16)

XkM = nYk +
m∑

j �=k

ckjYj (20)

because ckk = XkXT
k = n since the bipolar vector Xk lies in the

n-cube {−1, 1}n of bipolar n-vectors. The first term nYk in (20)
acts as the signal term because the correlation matrix M stores
the pair (Xk, Yk). The second term in (20) acts as cross-talk
noise from the other m − 1 associations (Xj, Yj) stored in M.

The sign and magnitude of the correlation coefficients cij

assist the threshold decoding process. The input key Xk puts
the maximum positive weight n on Yk in (20). An input X that
is close Xk gives a correlation coefficient X ·Xk that is likewise
close to n. So this signal coefficient does its best to magnify

Yk in the output sum (20). This magnification only helps the
threshold process in (5) recover Yk.

The other m−1 coefficients ckj also help make the crosstalk
term in (20) more likely to threshold to Yk. This effect depends
on a subtle connection between the bipolar cube {−1, 1}n of
bipolar vectors Xk and the binary or Boolean cube {0, 1}n of
the corresponding bit vectors Ak. Define the l1 or Hamming
distance H(Ai, Aj) between the bit vectors Ai and Aj as the
number of slots in which the two vectors differ

H
(
Ai, Aj

) =
n∑

u=1

|au
i − au

j | (21)

since |au
i − au

j | = 0 if and only if au
i = 0 = au

j or au
i =

1 = au
j at the uth slot. Then we can interchange the bipolar-

based correlation coefficients cij with the Hamming distances
H(Ai, Aj) through the equality

cij = n − 2H
(
Ai, Aj

)
. (22)

The equality follows from writing cij = Xi ·Xj as the number of
slots where the two bipolar vectors are equal minus the number
where they differ. The latter difference is just the Hamming
distance H(Ai, Aj). So the former difference is n − H(Ai, Aj).

The equality (22) shows that the sign and magnitude of the
correlation coefficient cij describe the metrical relationship of
the two bit vectors Ai and Aj in the Boolean n-cube

cij � 0 if and only if H
(
Ai, Aj

)
� n

2
. (23)

Two bipolar vectors Xi and Xj are closer to each other than
each is to the other’s complement if cij > 0. Then the corre-
sponding bit vectors Ai and Aj are less than half their space
away from each other: H(Ai, Aj) < n/2. The bipolar vectors
are farther apart if cij < 0. Then the two-bit vectors are more
than half their space away from each other: H(Ai, Aj) > n/2.

Assume that an approximate continuity condition holds
between the distances in the input Boolean cube {0, 1}n and
in the output Boolean cube {0, 1}p

1

n
H

(
Ai, Aj

) ≈ 1

p
H

(
Bi, Bj

)
(24)

if Bi is the bit vector that corresponds to the output bipolar
vector Yi. Then the m − 1 correlation coefficients cij in the
crosstalk term in (20) use their signs and magnitudes to make
the m − 1 bipolar vectors Yj tend to match the signal term Yk.

This thresholding effect improves if the number m − 1 of
crosstalk terms is small. It also improves to the extent that the
input vectors Xj or Aj are spread out or approximately orthog-
onal. Repeated BAM sweeps can compound these denoising
effects. So the Hebbian correlation structure of M gives at least
a partial explanation of where the BAM converges given an
input key X that resembles Xk more than it resembles any of
the other stored input vectors Xj.

This same metrical argument helps explain the common
observation that correlation-matrix BAMs converge faster and
more accurately if the input keys are bipolar vectors Xk rather
than binary vectors Ak. A recent comparison of using bipolar
versus binary logistic neurons at the BAM fields found that
bipolar inputs tended to converge faster than binary inputs by
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an order of magnitude for a memory matrix based on samples
from the MNIST dataset of hand-drawn digits [5].

The key result is that the correlation coefficient cij has twice
the magnitude of the mixed coefficient Ai · Xj

cij = 2Ai · Xj (25)

if the number of 1s in Ai equals the number of 0s: |Ai| =
Ai · I = n/2 for each input bit vector Ai. The assumption that
|Ai| = n/2 holds does not depend on the order of the bits
in the vector. It implies that |Xi| = 0 since |Xi| = Xi · I =
(2Ai − I)IT = n − n = 0 since Xi = 2Ai − I for the row vector
I of n 1s.

The inner-product equality in (25) holds approximately if
the number of 1s in Ai is approximately n/2: |Ai| ≈ n/2. This
tends to hold for large n in the sense of a simple symmetric
random walk that starts at the origin.

We show now that the expected number of 1s in Ai is exactly
n/2 if the n bit-vector components au

i define n independent
Bernoulli random variables with common success probability
p = 1/2. Then the bipolar transform xu

i = 2au
i − 1 defines

the corresponding bipolar component xu
i as an independent

Rademacher random variable: P(xu
i = 1) = p and P(xu

i =
−1) = q = 1−p. The expected value of the n random bipolar
slot variables xu

i is just the sum of the expectations: E[Xi · I] =
n(p − q) = 0 if p = 1/2 = q. Then slot independence gives
the variance as V[Xi · I] = 4npq = n if p = 1/2. Then the
expected number of bits in Ai is E[|Ai|] = E[Ai·I] = E[1/2(I+
Xi) · I] = n/2 + 1/2E[Xi · I] = n/2 + 1/2n(p − q) = np.
So E[|Ai|] = n/2 holds. Independence likewise implies that
V[|Ai|] = 1/4 V[Xi · I] = npq. So the variance of the sum
of 1s is n/4. These last two results also follow from the fact
that a sum of independent and identically distributed Bernoulli
random variables is a binomial random variable. The strong
law of large numbers [15] further shows that the sample mean
of the independent Bernoulli-component vectors Ai converges
with probability one to a constant vector A whose components
sum to n/2.

The argument for the inner-product equality (25) also uses
the bipolar transform Xi = 2Ai − I

Xi · Xj − Ai · Xj =
(

Xi − 1

2
Xi − 1

2
I

)
· Xj (26)

= 1

2
Xi · Xj (27)

since |Aj| = n/2 holds and implies that 1/2I·Xj = 1/2|Xj| = 0.
Rearrangement gives cij = Xi ·Xj = 2Ai ·Xj. Then (22) and (23)
imply the further metrical insight into the magnitude and sign
of bipolar keys compared with binary keys

cij � Ai · Xj if and only if H
(
Ai, Aj

)
� n

2
(28)

if |Ai| = n/2 holds at least approximately for all bit vectors
Ai. The same assumptions should hold for the p-dimensional
bit vectors Bi on the reverse BAM pass.

C. Discrete ABAM Theorem

The previous section showed how discrete correlation learning
helps explain where a BAM converges in some cases. Offline

correlation learning with (16) also gives a simple algorithm for
programming a 2-layer BAM. This section shows that these
local correlations naturally extend the discrete BAM theorem to
the adaptive case. The next section presents continuous versions
of this result for Hebbian and competitive learning.

Suppose that the memory weight mij updates slightly after
both the FX and FY fields have updated at time t + 1

mij(t + 1) = mij(t) + �mij(t + 1). (29)

Then what learning increment �mij(t+1) = mij(t+1)−mij(t)
still ensures stability with the energy function E(aX, aY |M) =
−aXM(aY)T in (8)?

The memory matrix update �M produces the energy change
�EM(t + 1)

�EM(t + 1) = −aX�M
(
aY)T

(30)

= −
n∑

i=1

p∑

j=1

ax
i (t + 1)ay

j (t + 1)�mij(t + 1). (31)

So the energy decrease �EM(t + 1) < 0 holds if the learning
increment �mij(t + 1) simply correlates the local input and
output activations ax

i and ay
j . This gives an unsupervised and

local Hebbian learning law

�mij(t + 1) = ct+1ax
i (t + 1)ay

j (t + 1) (32)

for sufficiently decreasing rate ct+1 to bound mij. Then insert-
ing this Hebbian learning law �M(t + 1) = (aX)TaY into the
energy update �EM decreases the bounded Lyapunov function
along adaptive BAM trajectories

�EM(t + 1) = −
n∑

i=1

p∑

j=1

(
�mij(t + 1)

)2
< 0. (33)

The total energy state change is �E = �Ef + �Eb

+ �EM < 0 so long as a single neuron activation or
synaptic weight changes. This proves the discrete adaptive
BAM theorem for Hebbian learning.

Discrete ABAM Theorem: Hebbian learning �M(t + 1) =
(aX)TaY is bidirectionally stable for threshold or threshold-
like neurons and for asynchronous or synchronous state
updates.

Learning in practice scales the learning increment �M with
a learning-rate constant ct+1 > 0 to bound M. Simulation may
also scale the activations. We omit these rate constants for
clarity in the next section.

D. Continuous ABAM Theorems

The discrete Hebbian correlation learning law �mij = ax
i ay

j
in (29) goes over in the continuous case to a Hebbian activation
learning law for bounded activations [9]

ṁij(t) = −mij + ax
i (t)a

y
j (t) (34)

where the overdot denotes time differentiation: ṁij = dmij/dt.
The term −mij describes the synapse’s inherent passive

decay in the absence of neural stimulation. Then ṁij = −mij

implies exponential forgetting of all initial memory mij(0):
mij(t) = mij(0)e−t → 0. Some form of such exponential
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decay holds for most biological as well as electrical memory
elements. We assume without loss of generality that the acti-
vations are bounded in the unit interval: 0 ≤ ax

i ≤ 1 and
similarly for ay

j .
The Hebbian learning law quickly learns stable activation

values ax
i and ay

j . The equilibrium condition ṁij = 0 implies
that the synaptic weight mij encodes a Hebbian correlation:
mij = ax

i ay
j . This learned correlation value is either 0 or 1 for

stable binary coding or either −1 or 1 for stable bipolar coding.
The bipolar learning increment always obeys the bound −1 ≤
ax

i ay
j ≤ 1.

The Hebbian law (34) is a first-order linear differential equa-
tion. So it has an exact solution. The solution is straightforward
once the activations have stabilized. Suppose that the learning
product ax

i ay
j equals either −1 or +1 after the neural fields

have stabilized. Suppose first that ax
i ay

j = 1. Then the learning
law ṁij + mij = 1 is a first-order inhomogeneous linear dif-
ferential equation with constant coefficients. It has the exact
solution

mij(t) = e−tmij(0) +
∫ t

0
es−tds (35)

= e−tmij(0) + 1 − e−t. (36)

So mij(t) → 1 exponentially quickly for any initial memorized
information mij(0). The case ax

i ay
j = −1 likewise leads to −1

exponentially quickly.
The Hebbian adaptive BAM system combines the correla-

tion learning law (34) with dynamical equations that describe
the input arguments ox

i and oy
j . We here state only additive

dynamics because they both show the proof technique and
often occur in practice and in biological modeling

ȯx
i = −ox

i +
p∑

j=1

ay
j

(
oy

j

)
mij + Ix

i (37)

ȯy
j = −oy

j +
n∑

i=1

ax
i

(
ox

i

)
mij + Iy

j (38)

for external forcing inputs Ix
i and Iy

j . We assume here for sim-
plicity that these inputs vary so slowly as to be constants. The
sum terms are self-excitation terms. The proof of the Hebbian
ABAM theorem requires that the activations are bounded and
nondecreasing: ax′

i = dax
i /dox

i ≥ 0. This always holds for
logistic and other sigmoidal activations. The more general
Cohen–Grossberg dynamics can require other assumptions to
keep the Lyapunov system bounded [12].

The continuous Lyapunov energy function E must allow for
changing memory weight values mij. This amounts to adding
a constant to the earlier quadratic energy. That constant turns
out to be the scaled trace value (1/2)Trace(MMT). It had a
zero time derivative but now depends on the Hebbian learning
law (34). This gives the ABAM energy function as a sum of
five terms plus the scaled trace term

E
(
aX, aY |M) = −

n∑

i=1

p∑

j=1

ax
i

(
ox

i

)
ay

j

(
oy

j

)
mij

+
n∑

i=1

∫ ox
i

0
ax′

i

(
ux

i

)
ux

i dux
i −

n∑

i=1

ax
i

(
ox

i

)
Ix
i

+
p∑

j=1

∫ oy
j

0
ay′

j

(
vy

j

)
vy

j dvy
j

−
p∑

j=1

ay
j

(
oy

j

)
Iy
j + 1

2

n∑

i=1

p∑

j=1

m2
ij. (39)

Taking the time derivative of E requires the triple product rule
of differentiation for the quadratic sum and the chain rule for
the two integrals. This gives

Ė = −
n∑

i=1

ax′
i

(
ox

i

)
ȯx

i

[
− ox

i +
p∑

j=1

ay
j

(
oy

j

)
mij + Ix

i

]

−
p∑

j=1

ay′
j

(
oy

j

)
ȯy

j

[
− oy

j +
n∑

i=1

ax
i

(
ox

i

)
mij + Iy

j

]

−
n∑

i=1

p∑

j=1

ṁij[a
x
i ay

j − mij]. (40)

Then inserting the dynamical models (34) and (37)-(38) shows
that the bounded energy function decreases along system
trajectories

Ė = −
n∑

i=1

ax
i

(
ȯx

i

)2 −
p∑

j=1

ay
j

(
ȯy

j

)2 −
n∑

i=1

p∑

j=1

ṁ2
ij (41)

< 0 (42)

for any change in the doubly dynamical system of chang-
ing neurons and changing synapses. This gives the Hebbian
ABAM theorem.

Hebbian ABAM Theorem: The Hebbian ABAM system (34)
and (37)-(38) is globally stable.

The ABAM view of a brain or similar system is that the
system continually moves through global equilibria. The equi-
libria change as external and internal stimuli perturb the many
interconnected neural fields and synapses and as they strug-
gle to converge. A thought or perception would correspond to
such a stable global equilibrium before it dissolved and trans-
formed into another equilibrium. ABAM convergence depends
in no way on the number n+p of neurons or on the number np
of synapses. Nor does it require any form of synchronization
or supervision. A large-scale ABAM would exist in a type of
default dream state subject to external stimulus forcing from
the environment.

The ABAM theorem also holds for competitive learning
with a steep win–loss activation. All synapses change in gen-
eral with some form of Hebbian learning. Competitive learning
limits learning to the synapses that flow into that neuron in
the output field FY that wins that layer’s competition for input
activation [16]

ṁij(t) = ay
j

[
ax

i (t) − mij
]

(43)

where the win–loss activation ay
j is such a steep binary logistic

or threshold that it acts like the indicator function ICk for the
kth input pattern class Ck. Suppose the jth neuron in FY wins:
ay

j = 1. Then the weight mij converges exponentially quickly
to the input activation ax

i .

Authorized licensed use limited to: Universidad Nacional Autonoma De Mexico (UNAM). Downloaded on January 24,2024 at 23:23:21 UTC from IEEE Xplore.  Restrictions apply. 



KOSKO: BAMs: UNSUPERVISED HEBBIAN LEARNING TO BIDIRECTIONAL BACKPROPAGATION 111

Intralayer synaptic connections at FY can guide the com-
petitive dynamics for activation from the FX field. Most
competitive learning models in practice approximate these
competitive dynamics by simply picking the winner as that
neuron in FY whose synaptic fan-in vector most closely
matches the current input activation vector aX . Competitive
networks form the basic building blocks of the family of
adaptive resonance theory (ART) networks [17], [18]. A com-
petitive ABAM gives a crude approximation of a simple ART
system. It also ensures rapid global stability that does not
depend on the size of the network.

A steep output activation ay
j and (43) preserve the decreasing

structure of the last term on the right-hand side of (40)

ṁij[a
x
i ay

j − mij] = ay
j [ax

i − mij][a
x
i ay

j − mij] (44)

= (ax
i − mij)

2 (45)

if the jth neuron in FY wins: ay
j = 1. The right-hand side

of (44) equals zero if the jth neuron loses: ay
j = 0. So the

far right-hand term in (40) can only decrease. That still gives
Ė ≤ 0 along competitive ABAM trajectories. That energy
decrease establishes the competitive ABAM theorem.

The final section shows how to extend BAMs to multiple
layers and how to train them with supervision.

IV. BIDIRECTIONAL BACKPROPAGATION

FOR DEEP NETWORKS

The new bidirectional backpropagation algorithm shows
how supervised learning can train a deep neural classifier or
regressor in both the forward and backward directions [2]. This
defines a generalized BAM because the neural signals flow
forward and backward in deep sweeps through the same web
of synapses. Rectangular matrices Mh still connect contigu-
ous layers from the input field FX through the hidden layers
on to the final output field FY . The backward flow still uses
the transpose MT

h of these synaptic matrices. So the basic and
minimal BAM structure still holds.

Bidirectional backpropagation’s time complexity is O(n)

for n training samples because unidirectional backpropagation
has O(n) complexity. The bidirectional forward and back-
ward sweeps give a total complexity of O(n) = O(n) +
O(n). So bidirectional backpropagation scales like ordinary
backpropagation.

The forward sweep starts with an input pattern x and ends
with the output y = N(x). Denote the result of the backward
pass through the network as NT(y) = NT(N(x)) to reflect the
backward pass through the transpose matrices MT

h .
The backward signal NT(y) that arrives back at the input

layer acts as a type of network attentive focus on the input
pattern x that stimulated the BAM network. This also resem-
bles the top-down signal in ART. The network expects to see
the pattern NT(y) at the input given what it has learned and
given the input stimulus x [16], [18].

Bidirectional backpropagation does not require that a
network have a point inverse. The 3-layer BAM representation
of the permutation function π and its inverse π−1 in Fig. 1 is
the exception and not the rule. Most vector mappings do not
have a point inverse. But they always have a set-theoretical

inverse or pullback mapping N−1 : 2RK → 2Rn
. The pullback

maps output sets B back to input sets A: A = N−1(B) = {x ∈
Rn : N(x) ∈ B} if B ⊂ RK . So a classifier’s K output unit bit
vectors e1, . . . , eK partition the input pattern space Rn into K
pattern classes: Rn = N−1(e1) ∪ · · · ∪ N−1(eK).

The BAM’s backward-pass output NT(ek) is a point in the
input pattern space Rn. It is not the pullback set N−1(ek). It
may not even lie in N−1(ek).

The backward-pass output NT(ek) may also serve as the
answer to a why question: Why did the network produce this
output ek? What caused the observed output? The ordinary
forward-pass output N(x) can answer a corresponding what-if
question: What happens if x stimulates the system? What will
it cause?

A multilayer BAM can define a classifier or a regressor or
some combination of both. A typical feedforward deep clas-
sifier in fact defines a bidirectional classifier–regressor. The
input pattern vector x ∈ R

n enters the input layer FX of n
neurons with identity activations: ax

i (xi) = xi. These identity
neurons act as data registers. There may be several hidden lay-
ers of neurons that have logistic or quasilinear rectified-linear
(ReLU) activations or that have some other form of activations.

What defines the classifier network is its final layer FY of K
classifier neurons. These K neurons are almost always softmax
activations in the literature of machine learning [19], [20]

ay
j (o

y
j ) = exp(oy

j )
∑K

k=1 exp(oy
k)

. (46)

Then the output activation vector aY defines a K-dimensional
probability vector. Supervised training of the classifier almost
always uses 1-in-K encoding for the output softmax neurons.
This technique codes the kth target vector tk as the kth unit
basis bit vector ek if the input pattern x comes from the kth
pattern class.

A related practice in machine learning rounds off the actual
output probability vector y from (46) into a unit bit vector ek.
The basis vector ek has a 1 in the kth slot and has 0s in the
other K − 1 slots. Users then declare that the deep network
has classified the input pattern x to the kth decision class if
the raw output y = N(x) rounds off to the unit basis vector ek.

The softmax activation (46) generalizes the logistic activa-
tion in (1)–(3) to K decision classes. The softmax probability
functions extend the simple 2-class Bayes-theorem structure of
a logistic probability to a K-class form of the Bayes theorem.
The softmax activation also has a more complicated partial
derivative with respect to its input

∂ay
j

∂oy
k

=
{−ay

kay
j if j �= k

ay
j (1 − ay

j ) if j = k.
(47)

Only the case of j = k corresponds to the non-negative logistic
derivative (4). The other K − 1 cases when j �= k yield a non-
positive derivative. Using this derivative and the multinomial
likelihood of a softmax layer yields the same error-times-signal
form (61) of the main backpropagation learning term as holds
for logistic and identity layers. So backpropagation invariance
still holds [5].
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Fig. 3. Bidirectional backpropagation avoids the directional overwriting of
ordinary unidirectional backpropagation. It uses the joint log likelihood in (55)
and so uses a sum of forward and backward error functions. The three plots
compare the training of the 3-layer logistic BAM in Fig. 1 that learns the
permutation map π and its inverse π−1 from Table I. (a) Unidirectional back-
propagation trains well on the forward error but overwrites the learning of the
inverse map on the backward pass. (b) Unidirectional backpropagation trains
well on the backward error but overwrites the learning of the permutation map
on the forward direction. (c) Bidirectional BP trained the network with the
summed double cross-entropies in (69). It produced no overwriting in either
direction.

Identity neurons at a classifier’s input layer may appear triv-
ial because users treat them as ports for data entry. They are
not trivial in terms of their likelihood. They imply a layer like-
lihood that is vector normal with a default white or diagonal
covariance matrix K [5]: t ∼ N (t|s, K) for target vector t.
This also holds when the output neurons have identity acti-
vations in a regression network that approximates a function
or a time series. Taking the logarithm of the vector normal
likelihood gives the negative of the squared-error function in
the second right-hand term of (69).

Bidirectional backpropagation itself involves two key prob-
abilistic insights. The first is that the algorithm iteratively and
locally maximizes the joint forward and backward network
probabilities pf (y|x,�) and pb(x|y,�). These directional

probabilities may also depend on several intervening hidden
layers. The multilayer BAMs in Figs. 1(b) and 4 present the
simplest case where the algorithm focuses on the likelihood
structure of just the output and input neural layers. Their
layer likelihood or probability structure also controls proper
noise injection during training and may affect other algorith-
mic processes. The second insight is that the multiplication
theorem of probability factors the directional probabilities into
conditional-probability factors involving the layers.

Bidirectional backpropagation is a form of maximum-
likelihood estimation. It seeks the locally optimal network
weight or parameter vector �∗ that maximizes the joint
network likelihood

�∗ = argmax
�

pf (y|x,�)pb(x|y,�) (48)

where for the moment we omit the dependence on hidden
layers. The logarithm is monotone increasing. So bidirectional
backpropagation equally seeks the joint maximization of the
directional log likelihoods

�∗ = argmax
�

ln pf (y|x,�) + ln pb(x|y,�). (49)

The gradient ∇�L = ∇� ln pf (y|x,�)+∇� ln pb(x|y,�) gives
the bidirectional backpropagation algorithm if backpropaga-
tion invariance holds at the input and output layers.

The multiplication theorem describes the likelihood struc-
ture of any deep neural network N for input vector x and
output vector as y. This is the same factorizing of a joint
probability that shows how to find the probability of get-
ting dealt three aces without replacement from a deck of 52
cards: P(A1 ∩ A2 ∩ A3) = P(A1)P(A2|A1)P(A3|A1 ∩ A2) =
(4/52)(3/51)(2/50) = 1/5525.

The multiplication theorem applies whenever a network
has hidden layers. So suppose that the network has k hid-
den layers of neurons h1, . . . , hk. Suppose further that a large
vector or array of parameters �n describes the network struc-
ture at learning epoch n. Then the multiplication theorem
shows how to factor the total forward network likelihood
p(y, hk, . . . , h1|x,�n) into a product of the layer likelihoods
in a forward pass through the deep network

p
(
y, hk, . . . , h1|x,�n) = p

(
y|hk, . . . , h1, x,�n)

× p
(
hk|hk−1, . . . , h1, x,�n) · · ·

p
(
h2|h1, x,�n)p

(
h1|x,�n). (50)

Taking logarithms in (50) gives the total forward log likelihood
L(x) for input pattern x at learning epoch n

L(x) = L(y|x) + L(hk|x) + · · · + L(h1|x) (51)

where L(hk|x) = ln p(hk|hk−1, . . . , h1, x,�n).
The total backward likelihood p(x, h1, . . . , hk|y,�n) has

the reverse product form

p
(
x, h1, . . . , hk|y,�n) = p

(
x|h1, . . . , hk, y,�n)

× p
(
h1|h2, . . . , hk, y,�n) · · ·

p
(
hk−1|hk, y,�n)p

(
hk|y,�n).

(52)
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Taking logarithms gives the total backward log likelihood L(y)

for “input” y on the backward sweep through NT

L(y) = L(x|y) + L(h1|y) + · · · + L(hk|y) (53)

where L(hj|y) = ln p(hj|hj+1, . . . , hk, y,�n).
A total bidirectional sweep passes neural signals forward

through the deep network N and then backwards through its
reverse mapping NT. The reverse mapping NT is not a point
inverse. It is just the result of passing signals from the out-
put back through all the neurons and transpose matrices in
the network. This back and forth signal flow gives the total
bidirectional network probability p(x, y|�n) as the product

p
(
x, y|�n) = p

(
y, hk, . . . , h1|x,�n)p

(
x, h1, . . . , hk|y,�n).

(54)

Taking logarithms gives at last the total bidirectional log like-
lihood L(x, y) of the deep BAM network N as the sum of the
directional log likelihoods

L(x, y) = ln p
(
x, y|�n) = L(x) + L(y). (55)

Multiplying the terminal layer likelihoods by prior probabili-
ties gives penalized or Bayesian bidirectional backpropagation.
Taking logarithms gives the total log posterior of the bidirec-
tional network.

The next insight follows from a recent theorem.
Backpropagation is a special case of the general-
ized EM algorithm for maximum-likelihood estimation of
parameters [5], [21]. This important result follows ultimately
from the fact that Shannon entropy minimizes cross entropy
by way of Jensen’s inequality and the concavity of the log-
arithm. Each gradient step of backpropagation equals exactly
the gradient partial-maximization step of generalized EM as
the network climbs the nearest hill of probability or log likeli-
hood in the parameter space. The result follows from the EM
trick of rearranging any hidden-layer posterior p(h|y, x,�) =
p(h, y|x,�)/p(y|x,�) as the network’s (forward) output prob-
ability p(y|x,�) = p(h, y|x,�)/p(h|y, x,�). Take logarithms
of both sides. Then take expectations of both sides with respect
to the hidden posterior p(h|y, x,�n) at iteration n of the
parameter vector �n. This gives the network log likelihood
as ln p(y|x,�) = Q(�|�n) + H(�|�n) for EM’s surrogate
likelihood Q(�|�n) and the cross entropy H(�|�n) at n. But
the Shannon entropy H(�n|�n) minimizes the cross entropy
at each n: H(�n|�n) ≤ H(�|�n). So the gradient is null:
∇�nH(�n|�n) = 0. Then ∇�n ln p(y|x,�n) = ∇�nQ(�n|�n)

holds identically at each learning iteration n. So BP = EM. This
result also shows how to noise-boost ordinary and bidirectional
backpropagation by first noise-boosting generalized EM [3], [5].

The proof that BP = EM further requires that back-
propagation invariance holds at each layer of neurons. The
layer’s log-likelihood’s parameter gradient ∇�nL must give
back the same basic signal-times-error BP learning law as
in (61) [5]. This follows in turn if each layer’s log likeli-
hood L equals the negative of the layer’s error function. The
partial derivatives involving the inner hidden layers have the
same form since here we focus only on training with respect
to the BAM network’s terminal layers. The same invariance
holds internally in general because of the layer-likelihood
factorization in (50)–(55).

There are three main cases of layer likelihoods in practice.
A classifier’s output layer of K softmax neurons has a layer
likelihood of a one-shot multinomial or categorical probabil-
ity distribution. A pass through the layer corresponds to the
roll of a K-sided die. Then the log likelihood L equals the
negative cross entropy. A regressor’s output or hidden layer
of identity neurons has a layer likelihood of a vector nor-
mal probability density. Then the log likelihood L equals the
negative squared error of classical backpropagation [22], [23].
So maximizing the layer probability minimizes the squared
error and vice versa. This property shows that backpropaga-
tion invariance holds for the gradient optimization of a softmax
neural layer [5].

The third case occurs for a layer of logistic or sigmoidal
neurons. The 3-layer BAM in Fig. 1(b) is a small-scale exam-
ple. The output layer can consist of K such logistic neurons
for a high-capacity network. These networks code with some
of the 2n vertices of the n-dimensional unit hypercube rather
than code with just the n vertices of the embedded simplex as
with softmax classifiers [24]. The layer likelihood corresponds
to a product of Bernoulli probabilities or independent flips of
K coins [5]. Then the log likelihood L equals the negative
double cross entropy in (58).

The bidirectional BP algorithm updates the joint bidirec-
tional log likelihood L = L(x) + L(y) one directional sweep
at a time. That means it learns with the sum of the negative
error function E(�n) = Ef (�

n) + Eb(�
n) at learning epoch

n. Training with either one of these directional errors alone
results in overwriting or undoing the previous training in the
reverse direction. Training with both errors avoids such over-
writing and jointly reduces both errors. This may explain why
earlier neural classifiers and regressors have operated only in
the forward mode. Training them in reverse can only under-
mine the forward training since they use just a forward-only
error function.

The 3-layer logistic BAM in Fig. 1(b) uses logistic–logistic
bidirectional backpropagation to train its steep logistic neu-
rons. We replaced all logistic neurons with actual threshold
functions with zero thresholds after training. The logistic neu-
rons and backpropagation invariance imply that the input and
output layer likelihoods are products of independent Bernoulli
probabilities [5]. So the forward likelihood pf (y|x,�) has the
product-Bernoulli form

pf (y|x,�) =
K∏

k=1

(
ay

k

)yk
(
1 − ay

k

)1−yk (56)

for bit-vector target y. The backward-pass likelihood
pb(x|y,�) has a similar form. Taking logarithms gives the
total bidirectional log likelihood and error E(�) as the double
cross entropy

E(�) = Ef (�) + Eb(�) (57)

= −
K∑

k=1

yk ln ay
k + (1 − yk) ln

(
1 − ay

k

)

−
I∑

i=1

xi ln ax
i + (1 − xi) ln

(
1 − ax

i

)
(58)

for I input logistic neurons.
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Fig. 4. Bidirectional recall in a deep neural classifier N after training
with unidirectional versus bidirectional backpropagation on the CIFAR-10
image dataset. The multilayer BAM used seven hidden layers of 512 ReLU
units each. Neural signals swept forwards and backwards through those lay-
ers from the 3072 input identity neurons to the ten output softmax neurons.
(a) The sample class centroids of the ten image pattern classes from the
CIFAR-10 dataset. (b) Backward-pass predictions given the class-label (unit
basis) output vectors ek after training with ordinary or unidirectional back-
propagation. The network produced only noise-like backward-pass feedback
signals NT(ek). (c) Backward-pass predictions after training with bidirectional
backpropagation and using the proper joint error in (69). The feedback signals
NT(ek) closely matched the corresponding sample class centroids.

We now show that the basic error-times-signal form of back-
propagation learning holds for the forward pass to a logistic
layer of K output logistic neurons. The same result holds
for the backward pass to an input layer of logistic neurons.
Suppose at the logistic output field FY we want to observe the
target bit vector t ∈ {0, 1}K as the neural output y = N(x).
Denote the forward logistic log likelihood as Lf

Lf = ln pf (t|x,�) (59)

=
K∑

k=1

tk ln ay
k + (1 − tk) ln

(
1 − ay

k

)
. (60)

Note that pf (t|x,�) = exp(−Ef (�)) from (58). So minimiz-
ing the double cross entropy Ef (�) maximizes the forward
likelihood and conversely.

The central result is that backpropagation’s first main
learning term ∂Lf /∂mjk has the form

∂Lf

∂mjk
= (

tk − ay
k

)
ah

j (61)

if the weight matrix M connects the network’s final hidden
layer to the output layer of K logistic neurons in FY . This hid-
den layer has nh neurons with activations ah

j . The derivation
uses three partial derivatives. The first is the partial deriva-
tive of the inner-product input oy

k = ∑nh
l=1 ah

l mlk with respect
to the weight mjk: ∂oy

k/∂mjk = ah
j . The second is the partial

derivative of the output logistic activation ay
k with respect to

oy
k. It has the product form in (4) with c = 1 for simplicity.

The third is the straightforward partial derivative of Lf with
respect to the output activation ay

k. Then the result (61) fol-
lows from the chain rule and substitution for the three partial
derivatives:

∂Lf

∂mjk
= ∂Lf

∂ay
k

∂ay
k

∂oy
k

∂oy
k

∂mjk
(62)

= ∂Lf

∂ay
k

∂ay
k

∂oy
k

ah
j (63)

= ∂Lf

∂ay
k

ay
k

(
1 − ay

k

)
ah

j (64)

=
[

tk
1

ay
k

− (1 − tk)
1

1 − ay
k

]

ay
k

(
1 − ay

k

)
ah

j (65)

= [
tk

(
1 − ay

k

) − (1 − tk)a
y
k

]
ah

j (66)

= (
tk − ay

k

)
ah

j . (67)

Backpropagation invariance ensures that the parameter gradi-
ent ∇�nL gives the same result for all other layer likelihoods
if the layer likelihoods match the probabilistic structure of the
layer activations.

The deep classifier in Fig. 4 had an input layer of 3072
identity neurons. They let the input layer encode images
from the CIFAR-10 dataset. The network used seven hidden
layers of 512 quasilinear ReLU units. The output layer used
ten softmax neurons and 1-in-K encoding with unit basis
vectors ek.

The input layer of identity neurons had a vector-normal
layer likelihood with a diagonal covariance matrix since this
layer functioned as the output layer of a regressor on the
backward pass. Taking the negative log likelihood gave the
backward error Eb as the squared error. The classifier’s 10
output softmax neurons had a cross entropy for its forward
error Ef . Then the total bidirectional error E(�) was the sum
of these directional errors

E(�) = Ef (�) + Eb(�) (68)

= −
K∑

k=1

yk ln ay
k + 1

2

I∑

i=1

(
xi − ax

i

)2 (69)

for I input identity neurons.
The second panel of Fig. 4 shows that running the uni-

directionally trained classifier produced only noise on its
backward pass because it trained only with Ef . The third panel
shows that the bidirectionally trained classifier produced an
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accurate estimate of the correct pattern-class centroid because
it instead trained bidirectionally with (69). Centroids minimize
the squared error of the regression. The bidirectionally trained
BAM network also had higher classification accuracy. The
accuracy increased further by carefully injecting EM-based
(not blind) noise during its training [3].

V. CONCLUSION

The basic BAM theorem states that every real matrix
is bidirectional stable for a two-layer neural network with
threshold-like neurons. This result extends in many direc-
tions for different neural and synaptic dynamics. The new
bidirectional backpropagation algorithm shows how to further
extend the BAM structure to any number of hidden layers.
This allows classifier or regressor networks to run in reverse
through the same synaptic web and improve performance. The
supervised algorithm does require far more computation and
careful choice of the activation and likelihood structure of each
neural layer.
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